Continuous Time Finance: Midterm 2.

2022-04-06

- This is a closed book test. You may not use phones, calculators, or other electronic devices.
- You may not give or receive assistance.
- You have 50 minutes. The exam has a total of 4 questions and 40 points.
- The questions are roughly ordered by difficulty. Good luck.

In this exam W always denotes a standard Brownian motion, and the filtration $\{\mathcal{F}_t | t \ge 0\}$ is the Brownian filtration. Here are a few formulae that you can use:

• Solution formula to the Black Scholes PDE:

$$f(t,x) = \int_{-\infty}^{\infty} e^{-r\tau} g\left(x \exp\left(\left(r - \frac{\sigma^2}{2}\right)\tau + \sigma\sqrt{\tau} y\right)\right) \frac{e^{-y^2/2} dy}{\sqrt{2\pi}}, \qquad \tau = T - t$$

• Black Scholes Formula for European calls, and the Greeks

$$c(t,x) = xN(d_{+}) - Ke^{-r\tau}N(d_{-}) \qquad d_{\pm} \stackrel{\text{def}}{=} \frac{1}{\sigma\sqrt{\tau}} \left(\ln\left(\frac{x}{K}\right) + \left(r \pm \frac{\sigma^{2}}{2}\right)\tau \right), \qquad N(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-y^{2}/2} \, dy,$$
$$\partial_{x}c = N(d_{+}), \qquad \partial_{x}^{2}c = \frac{1}{x\sigma\sqrt{2\pi\tau}} \exp\left(\frac{-d_{+}^{2}}{2}\right), \qquad \partial_{t}c = -rKe^{-r\tau}N(d_{-}) - \frac{\sigma x}{\sqrt{8\pi\tau}} \exp\left(\frac{-d_{+}^{2}}{2}\right).$$

- 10 1. Let S be a geometric Brownian motion with mean return rate α and volatility σ . Find ES_t . Express your answer in terms of S_0 , α , σ and t without using expectations or integrals. You may assume $S_0 > 0$ is not random. [Even though this was a question on your homework, please provide a complete derivation here. You may use other standard results from class/homework that are independent of this problem.]
- 10 2. Consider a market with a bank and a stock. The bank has interest rate r and the stock price is modelled by a geometric Brownian motion with mean return rate α and volatility σ . Let $0 < K_1 < K_2$, T > 0 and S_t denote the stock price at time t. Consider a security that pays $S_T K_1$ if $S_T \in [K_1, K_2)$, pays $K_2 K_1$ if $S_T \ge K_2$, and pays nothing otherwise. Find the arbitrage free price of this security at time $t \in [0, T]$. Express your answer in terms of $t, T, K_1, K_2, \alpha, \sigma, r, S_t$ and the CDF of the standard normal, without using expectations or integrals.
- 10 3. Let B be a Brownian motion that is independent of W, and let $M_t = \int_0^t W_s B_s^2 dW_s$. Find $E(W_t^2 M_t)$. Express your answer in terms of t without using expectations or integrals.
- |10||4. Consider a market with a bank and a stock. The bank has interest rate r, and the stock price satisfies

$$dS_t = b(t, S_t) dt + \sigma(t, S_t) dW_t,$$

where b = b(t, x) and $\sigma = \sigma(t, x)$ are two given functions. You may assume $\sigma(t, x) > 0$ for all x, t. Given a function g, consider the security that pays $g(S_T)$ at maturity time T. Suppose this security is replicable, and the wealth of the replicating portfolio is at time t is $f(t, S_t)$ for some function f. Express $\partial_t f$ in terms of $t, x, f, \partial_x f, \partial_x^2 f, b, \sigma$ and r. Your answer should not involve S_t , expectations or integrals.