


9.3. Constructing Risk Neutral Measures. Suppose the market has only one stock whose price process satisfies
dSt = αtSt dt + σtSt dWt .

Theorem 9.17. The (unique) risk neutral measure is given by dP̃ = ZT dP , where
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Proposition 9.18. The stock price satisfies
dSt = RtSt dt + σtSt dW̃ ,

where W̃ is a Brownian motion under the risk neutral measure.





9.4. Black Scholes Formula revisited.
• Suppose the interest rate Rt = r (is constant in time).
• Suppose the price of the stock is a GBM(α, σ) (both α, σ are constant in time).

Theorem 9.19. Consider a security that pays VT = g(ST ) at maturity time T . The arbitrage free price of this security at any time
t ⩽ T is given by f(t, St), where
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, τ = T − t .(7.4)

Remark 9.20. This proves Proposition 7.8.







Theorem 9.21 (Black Scholes Formula). The arbitrage free price of a European call with strike K and maturity T is given by:
c(t, x) = xN(d+(T − t, x)) − Ke−r(T −t)N(d−(T − t, x))(7.5)

where
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and
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is the CDF of a standard normal variable.

Remark 9.22. This proves Corollary 7.9.









9.5. The Martingale Representation Theorem.

Theorem 9.23. If Mt is a square integrable martingale with respect to the Brownian filtration, then there exists a predictable process
D such that E
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Remark 9.24. A square integrable martingale is a martingale for which EM2
t < ∞ for all t.

Remark 9.25. For our purposes, think of a predictable process as a left continuous and adapted process.

Theorem 9.26. Consider the one stock market form Theorem 9.17.
(1) Any P̃ martingale is the discounted wealth of a self financing portfolio (i.e. converse of Theorem 9.5 holds)
(2) Any security with an FT -measurable payoff is replicable, and so Theorem 9.7 holds for any FT -measurable function VT .
(3) The risk neutral measure is unique.


