hertme & (2/4). Please ENABLE VIDED if you can hast time: Could exp. SNO explicit foundar SAME prophies as in the disc case (examples end no being a bit haden)

Definition 5.5. $E_t X$ is the unique random variable such that:

(1) $\mathbf{E}_t X$ is \mathcal{F}_t -measurable.

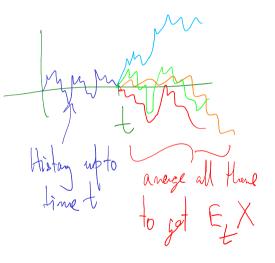
(1) \mathbf{E}_{t} is \mathcal{F}_{t} -measurable. (2) For every $A \in \mathcal{F}_{t}$, $\int_{A} \mathbf{E}_{t} \mathbf{X} d\mathbf{P} = \int_{A} \mathbf{X} d\mathbf{P}$ (i.e., $\mathbf{E}_{t} \left(\mathbf{A} \in \mathbf{F}_{t} \right) = \mathbf{E}_{t} \left(\mathbf{A} \in \mathbf{F}_{t} \right)$

Remark 5.6. Choosing $A = \Omega$ implies $\boldsymbol{E}(\boldsymbol{E}_t X) = \boldsymbol{E} X$.

Proposition 5.7 (Useful properties of conditional expectation).

(1) If $\alpha, \beta \in \mathbb{R}$ are constants, X,Y, random variables $E_t(\alpha X + \beta Y) = \alpha E_t X + \beta E_t Y$. \mathcal{L} If $X \ge 0$, then $\mathbf{E}_t X \ge 0$. Equality holds if and only if $\overline{X = 0}$ almost surely. (3) (Tower property) If $0 \leq s \leq t$, then $\mathbf{E}_s(\mathbf{E}_t X) = \mathbf{E}_s X$. $\zeta(4)$ If X is \mathcal{F}_t measurable, and Y is any random variable, the $\mathcal{F}_t(XY) = X \mathbf{E}_t Y$. (5) If \overline{X} is \mathcal{F}_t measurable, then $E_t X = X$ (follows by choosing $Y = \widehat{1}$ above). $\zeta(6)$ If Y is independent of \mathcal{F}_t , then $\mathbf{E}_t Y = \mathbf{E} Y$.

Remark 5.8. These properties are exactly the same as in discrete time.



Lemma 5.9 (Independence Lemma). If X is
$$\overline{F}_t$$
 measurable, Y is independent of \mathcal{F}_t , and $f = f(x, y) \colon \mathbb{R}^2 \to \mathbb{R}$ is any function, then
 $\overline{F}_t f(X,Y) \in a(X)$ where $a(y) = \overline{E}f(X,y)$.
Remark 5.10. If p_Y is the PDF of Y, then $E_t f(X,Y) = \int_{\mathbb{R}} f(X,y) p_Y(y) dy$.
 $f(X,Y) \in a(X)$ by $p_Y(y) dy$.
 $f(X,Y) = \int_{\mathbb{R}} f(X,y) p_Y(y) dy$.
 $f(X,Y) =$

Example 5.11. If X, Y are two independent standard normal random variables, find Ee^{iXY} .

Chim 1: XRY und wound = Joint PDF of (X,Y) is $\frac{1}{2} = \frac{(n^2 + y^2)}{2}$ $\Rightarrow E e^{i \chi \chi} = \int e^{i \chi \chi} e^{-(2i + \frac{\chi}{3})/2} dx dy$ & compte this integral pe Officer 2: Nice tricke weig the indep Lemma.

X, Y indep. Let F = T(X) = all evols that can be absented using the RVXi.e. $\{x > 0\} \in v(x)$. $\{x \in [i, 2]\} \in v(x)$ Obs: X is meas wit $T(X) = V_{x}$ indep lema! $k \neq is index f(X) = E(2|F_{z})$

indep lima, By the $E(e^{iXY}|X) = avgY$, leave X mone = g(X) where g(z) = E(e) $= \operatorname{chuv} \left\{ n \quad \text{af stat van} \right\}$ $= e^{-\frac{2}{2}/2}$ $=e^{-\tilde{\lambda}/2}$ $\Rightarrow E(e^{XY} | X) = e^{X/2}$ $\Rightarrow E e^{iXY} = E(E(e^{iXY}|X)) = E e^{-X/2}$

 $\int_{e}^{10} -\frac{\pi}{2} \frac{1}{2} \frac{1}{\sqrt{2\pi}}$ $= \int_{0}^{\infty} e^{-\frac{2}{3}/2 \cdot \left(\frac{1}{\sqrt{2}}\right)^{2}} \frac{dx}{\sqrt{2\pi} \left(\frac{1}{\sqrt{2}}\right)^{2}}$ 1 1/2,

5.4. Martingales. **Definition 5.12.** An adapted process M is a martingale if for every $0 \le s \le t$, we have $E_s M_t = M_s$.

Remark 5.13. As with discrete time, a martingale is a fair game: stopping based on information available today will not change your expected return.

Proposition 5.14. Brownian motion is a martingale. Proof. (Analog in disc time: 3_n iid, $E3_n = 0$, set $X_n = X + 3_{n+1}$ $i \cdot e = X_n = \sum_{j=1}^n Z_k$ X -> drose fime RW. Krons X is a mg (from 370). 1 heek BM à si mg ! Know $W_0 = 0$, $W_1 - W_5 \sim N(0, t-s)$

& W_- W_ is ind of \$5.

NTS - BM is a ma i.e. NTS Y DESET, ESW, = WS $P_{f}: E_{s}W_{t} = E_{s}(W_{t}-W_{s}+W_{s})$ $= E_{s}(W_{t} - W_{s}) + E_{s}W_{s}$ $= E(W_t - W_s) + W_s = W_s$

