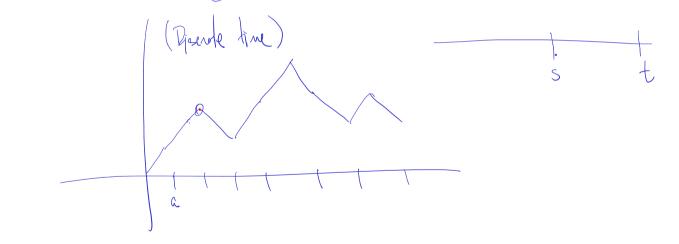
Lecture 5 (Jan 28)
Please ENABLE VIDEO If you can.
Lect time
$$\rightarrow$$
 lautit B.M.
Brownian Matim \rightarrow ets time RW.
R.W. : $X_{M} = \sum_{i=1}^{k} S_{k}$, $S_{k} \rightarrow iid$, $ES_{k}=0$, $ES_{k}^{2}=1$
($S_{M+1} = X_{M} + S_{M+1}$.

 $t \in (m, n+1)$ $Y = Y_{\chi} + (t - \chi) \vec{s}_{\chi + 1}$ Flip coins every & seconds Let $Y_{t}^{\varepsilon} = \sqrt{\varepsilon} Y_{t/\varepsilon}$ (RW with step size $\sqrt{\varepsilon}$ k coin flips occurry every ε sends) B. M. -> cts time RW -> cend E -> O Define $W_t = \lim_{t \to 0} Y_t^e = \lim_{t \to 0} \int_{t} \int_{t/e} \int_{t/$

• If t, s are multiples of ε : $Y_t^{\varepsilon} - Y_s^{\varepsilon} \sim \sqrt{\varepsilon} \sum_{i=1}^{(t-s)/\varepsilon} \xi_i \xrightarrow{\varepsilon \to 0} \mathcal{N}(0, t-s)$. (CLT) has the function $Y_t^{\varepsilon} - Y_s^{\varepsilon}$ only uses coin tosses that are "after s", and so independent of Y_s^{ε} . **Definition 5.2.** Brownian motion is a continuous process such that: $W_0 = 0$ (1) $W_t - W_s \sim \mathcal{N}(0, t-s)$, (2) $W_t - W_s$ is independent of \mathcal{F}_s .

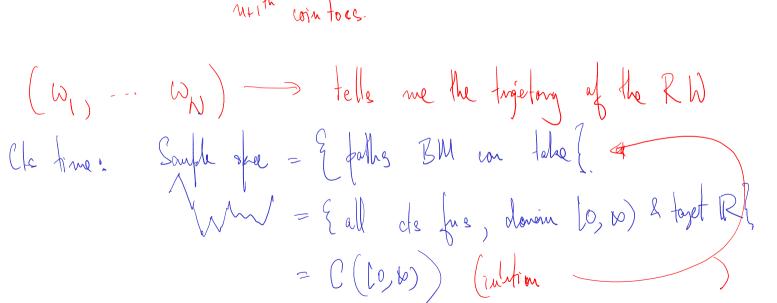
Remark 5.3. We will define \mathcal{F}_s shortly. Intuitively, (\mathcal{F}_s) is the set of all events that are "known" at time s.



For any
$$s < t$$
 expet be BM to chone dimiten
infinitly after between firmes $s \geq t$.
Also knows Expect B.M to be a de fu of time.
Claim: BM is always a tects fu of time
& With Prot 1, BM is not diffe anywhere (wat time)

Finane : Standad wood for stade griel $\begin{pmatrix} \text{heavisic} \\ \text{B.M.} \end{pmatrix} S_{t} = S_{t} e_{x} e_{x} \left(\left(X - \frac{r^{2}}{2} \right) t + \tau W_{t} \right)$ x -> mean netro note r > valation IN -> Browian motion!!

X_{ut1} = X_u + w_{nt1} _{ut1}th wintocs. (RW)



• Restrict our attention to \mathcal{G} , a subset of some sets $A \subseteq \Omega$, on which **P** can be defined. eleris a $\triangleright \mathcal{G}$ is a σ -algebra. (Closed countable under unions, complements, intersections.) • **P** is called a *probability measure* on (Ω, \mathcal{G}) if: $\triangleright (\mathbf{P}: \mathcal{G} \to [0, 1], \mathbf{P}(\emptyset) = 0, \mathbf{P}(\Omega) = 1.$ $\overrightarrow{\boldsymbol{P}}(\overrightarrow{A} \cup B) = \boldsymbol{P}(\overrightarrow{A}) + \boldsymbol{P}(\overrightarrow{B}) \text{ if } \overrightarrow{A}, \overrightarrow{B} \in \mathcal{G} \text{ are} \text{ (disjoint.)}$ are 60th many disj Hum P(⁶⁰ t₁ $\triangleright \text{ If } A_n \in \mathcal{G}, P(A_n) = \lim_{n \to \infty} \mathcal{P}(A_n).$ $) = \sum_{k=1}^{\infty} [$ ⁶ Random variables are *measurable* functions of the sample space: \triangleright Require $\{X \in A\} \in \mathcal{G}$ for every "nice" $A \subseteq \mathbb{R}$. $\triangleright \text{ E.g. } \{X = 1\} \in \mathcal{G}, \{X > 5\} \in \mathcal{G}, \{X \in [3, 4)\} \in \mathcal{G}, \text{ etc.}$ $\triangleright \text{ Recall } \{X \in A\} = \{\omega \in \Omega \mid X(\omega) \in A\}.$ > Sample scill is a V-algebra en SL Dig is a callelton af subsets of S (2) OEY, SLIEY

3 If A, BGG, then A, AUB, ANBEG. @ If A, Az - Eg then UAKEG. S_{M} $X \circ S \longrightarrow \mathbb{R}$. $Q: P(X > 0) = P(\{u \in \Omega \mid X(u) > 0\})$ = P({X>0})