




• If t, s are multiples of ε: Y ε
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s ∼ √
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ε→0−−−→ N (0, t − s).

• Y ε
t − Y ε

s only uses coin tosses that are “after s”, and so independent of Y ε
s .

Definition 5.2. Brownian motion is a continuous process such that:
(1) Wt − Ws ∼ N (0, t − s),
(2) Wt − Ws is independent of Fs.

Remark 5.3. We will define Fs shortly. Intuitively, Fs is the set of all events that are “known” at time s.







5.2. Sample space, measure, and filtration.
• Discrete time: Sample space Ω = (ω1, . . . , ωN ).
• View (ω1, . . . , ωN ) as the trajectory of a random walk.
• Continuous time: Sample space Ω = C([0, ∞)) (space of continuous functions).

▷ It’s infinite. No probability mass function!
▷ Mathematically impossible to define P (A) for all A ⊆ Ω.





• Restrict our attention to G, a subset of some sets A ⊆ Ω, on which P can be defined.
▷ G is a σ-algebra. (Closed countable under unions, complements, intersections.)

• P is called a probability measure on (Ω, G) if:
▷ P : G → [0, 1], P (∅) = 0, P (Ω) = 1.
▷ P (A ∪ B) = P (A) + P (B) if A, B ∈ G are disjoint.

▷ If An ∈ G, P
� ∞[

1
An

�
= lim

n→∞
P (An).

• Random variables are measurable functions of the sample space:
▷ Require {X ∈ A} ∈ G for every “nice” A ⊆ R.
▷ E.g. {X = 1} ∈ G, {X > 5} ∈ G, {X ∈ [3, 4)} ∈ G, etc.
▷ Recall {X ∈ A} = {ω ∈ Ω | X(ω) ∈ A}.




