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Let X,Y be two random variables.
Theorem 4.13. The following are equivalent. ? ><, L %}
< 1) X and Y have the same distribution (PDF) C,D \‘/ O)&D x . P (‘7\) %ﬂ

2): X and Y have the same CDF. — =

(3) X andY have the same charatteristic function. - X% XC//\\K
4) X andY have the same moment generating function. / € J

Theorem 4.14. A sequence of random variables (X,,) = X (m distribution) if and only if #x, = Px pointwise.
—

Theorem 4.15. A sequence of random variables (X,,) — X (in distribution) if and only if MX — MX pointwise
T

Remark 4.16. The proofs of Theorem 4.13—4.15 are beyond the scope of this course; we will use them without proof.
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5. Stochastic Processes.

5.1. Brownian motion.
e Discrete time: Simple Random Walk.
> X, = >.7 &, where &’s are i.i.d. E§; = 0, and Range(¢;) = {£1}.
e Continuous time: Brownian motion.
>Y, =X, +({t—n)p41 ift € n,n+1).
> Repeat more frequently: Flip a coin every € seconds, and take a step of size /z.
> Rescale: Y7 = (/eY} /.. (Chose /e factor to ensure Var(Y;") ~ t.)
> Let Wy = gi_r)]%}/f.

Definition 5.1 (Brownian motion). The process W above is called a Brownian motion.

> Named after Robert Brown (a botanist).
> Definition is intuitive, but not as convenient to work with.



(t—s)/e
o Ift,s are multiples of e: Y7 — Y ~ /& Z & =% N(0,t — 5).

e Y — Y only uses coin tosses that are after s”, and so independent of Y.

Definition 5.2. Brownian motion is a continuous process such that:
(1) Wy — W5 ~N(0,t — s),
(2) Wi — W; is independent of F.
Remark 5.3. We will define Fy shortly. Intuitively, Fy is the set of all events that are “known” at time s



