Lecture 2 (1/21). Please enable video if you can.

Theorem 4.7 (Central limit theorem). $S_n/\sqrt{n} \to \mathcal{N}(0,1)$. That is, for any bounded continuous function f,

.

$$\boldsymbol{E}f\left(\frac{\mathcal{Y}_n}{\sqrt{n}}\right) = \boldsymbol{E}f\left(\mathcal{N}(0,1)\right).$$

$$S_{4} = \frac{1}{2} X_{k} \qquad X_{k} \rightarrow iid, \quad EX_{k} = 0. \quad EX_{k} = 1$$

9: In what sense does
$$S_{n} \longrightarrow \mathcal{N}(\sigma, 1)$$
?
(Horse conv)
 $M_{c.c.} conv} \longrightarrow \mathcal{N}(\sigma, 1)$?
 M

oft (E, dist of $\frac{S_m}{\sqrt{n}}$ to com $\rightarrow dist(N(0,1))$ Wart the men be diene RV's @ Take a "foct function", { $E \left(\frac{S_{u}}{\sqrt{u}}\right) \xrightarrow{W_{ut}} E \left(\frac{N(0,1)}{\sqrt{u}}\right)$ Ker EVERY feet pution of.

Sam b, g ave 2 fre (cls) (Analogy o $f^{e}[0,1] \longrightarrow \mathbb{R}$ $g:[o,i] \longrightarrow \mathbb{R}$ $\int d = \int d = g$ Q: Does $= \int_{(1)}^{0} g \cdot (h) \quad \forall \quad fect \quad fuh \Rightarrow f = g$ Q: Does J.J. h

Let X be a random variable.

Let X be a random variable. Definition 4.8. The characteristic function of X is defined by $\varphi_X(\lambda) = \mathbf{E}e^{i\lambda X}$. Definition 4.9. The moment generating function (MGF) of X is defined by $M_X(\lambda) = \mathbf{E}e^{\lambda X}$. Example 4.10. If $X \sim N(0,1)$ then $\varphi_X(\lambda) = e^{-\lambda^2/2}$, and $M_X(\lambda) = e^{\lambda^2/2}$.

Note: X is a RV.
MGF of X (Notation
$$M_X$$
) is a fin.
densin M_X is a fin.
densin M_X target R .
subset of R
amain of char for $P_X = IR$. (o: $I_e^2 \lambda X I = 1$)

MGF of Normel. - ×/2. $\chi \sim \mathcal{N}(o, I)$. $Q_{\chi}(\lambda) = E e^{\lambda \chi} = \int e^{\lambda \chi} f_{\chi}(\chi) d\chi$ $= \int_{0}^{\infty} e^{2\pi - \frac{2}{2}} dx$ $-\frac{1}{\sqrt{2\pi}}.$ $= \int_{0}^{\infty} e^{-\frac{1}{2}\left(\pi^{2}-2\lambda x+\lambda^{2}\right)} + \frac{\lambda^{2}}{1/2} \frac{dx}{dx}$ SZK

 $= e^{\lambda^{2}/2} \int_{e}^{h} e^{-\frac{1}{2}(x-\lambda)^{2}} \frac{dx}{dx}$ SZT $= \frac{\lambda_{12}}{c} \left(\begin{array}{c} \lambda_{0} \\ c \end{array} \right) - \frac{\lambda_{12}}{3/2}.$ M= x- x dy - 10 $\left(\begin{array}{c} \lambda \\ \text{an check} \\ \psi_{\chi}(\lambda) = e \end{array}\right)$ 2. QFD

Theorem 4.11. $\underline{EX}^n = (-i)^n \varphi_X^{(n)}(0) = M_X^{(n)}(0)$. In particular, $\underline{EX} = -i\varphi'_X(0) = M'_X(0)$, and $\underline{EX}^2 = -\varphi''_X(0) = M''_X(0)$. Remark 4.12. Here $f^{(n)}(0)$ denotes the n^{th} derivative of f at 0.

Let X, Y be two random variables.

Theorem 4.13. The following are equivalent.

(1) X and Y have the same distribution (PDF) (2) X and Y have the same CDF. (3) X and Y have the same characteristic function. (4) X and Y have the same moment generating function. (5) Theorem 4.14. A sequence of random variables $(X_n) \to X$ (in distribution) if and only if $\varphi_{X_n} \to \varphi_X$ pointwise. Theorem 4.15. A sequence of random variables $(X_n) \to X$ (in distribution) if and only if $M_{X_n} \to M_X$ pointwise.

Remark 4.16. The proofs of Theorem 4.13–4.15 are beyond the scope of this course; we will use them without proof.