Lecture 1 (1/19). Please enable video if you can.

1/

2. Syllabus Overview

- Class website and full syllabus! https://www.math.cmu.edu/~gautam/sj/teaching/2021-22/420-cts-time-fin
- TA's: Jonghwa Park <jonghwap@andrew.cmu.edu>.
- Homework Due: 2:29PM, Wednesdays.
 Midterms: Wed 2/23, Mon 4/4 (closed book in class). (Mael Capel -
- Homework:
 - \triangleright Good quality scans please! Use a scanning app, and not simply take photos. (I use Adobe Scan.)
 - > 20% penalty if turned in within an hour of the deadline. 100% penalty after that.
- The population of the second s
 - ▷ Bottom homework score is dropped from your grade (personal emergencies, interviews, other deadlines, etc.).
 - ▷ Collaboration is encouraged. Homework is not a test ensure you learn from doing the homework.
 - ▷ You must write solutions independently, and can only turn in solutions you fully understand.

• Academic Integrity

- \triangleright Zero tolerance for violations (automatic **R**).
- \triangleright Violations include:
 - Not writing up solutions independently and/or plagiarizing solutions
 - Turning in solutions you do not understand.
 - Seeking, receiving or providing assistance during an exam.
- ▷ All violations will be reported to the university, and they may impose additional penalties. - HW ZO%, Midlem 20% (each) Find 30%.
- Grading: 10% hones ork, 30% midtern, 60% final. Course Outline.
- Develop tools to price securities in continuous time.
 - \triangleright Brownian motion (not as easy as coin tosses)
 - \triangleright Conditional expectation: No explicit formula!
 - ▷ Itô formula: main tool used for computation. Develop some intuition.
- ▷ Measurablity / risk neutral measures: much more abstract. Complete description is technical. But we need a working knowledge.
- ▷ Derive and understand the Black-Scholes formula.
- \triangleright Fundamental theorems of asset pricing
- \triangleright Asian options, Barrier options, etc.

3. Introduction.

(1) Binomial model: Trade at discrete time intervals (370).

- (2) Suppose now we can trade *continuously in time*.
- (3) Consider a market with a bank and a stock, whose spot price at time t is denoted by S_t .
- (4) The continuously compounded interest rate is r (i.e. money in the bank grows like $\partial_t C(t) = rC(t)$.
- (5) Assume liquidity, neglect transaction costs (frictionless), and the borrowing/lending rates are the same.
- (6) In the Black-Scholes setting, we model the stock prices by a Geometric Brownian motion with parameters α (the mean return rate) and σ (the volatility).
- (7) (Black-Scholes Formula) The price at time t of a European call with maturity T and strike K is given by

$$c(t,x) = xN(d_{+}(T-t,x)) - Ke^{-r(T-t)}N(d_{-}(T-t,x)),$$
where $d_{\pm} = \frac{1}{\sigma\sqrt{\tau}} \left(\ln\left(\frac{x}{K}\right) + \left(r \pm \frac{\sigma^{2}}{2}\right)\tau \right),$ $N(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-y^{2}/2} dy.$
(8) Can be obtained as the limit of the Binomial model as $N \to \infty$ by choosing:

$$\underbrace{r_{\text{binom}}}_{\text{r}} = \frac{r}{N}, \qquad u = u_N = 1 + \frac{r}{N} + \frac{\sigma}{\sqrt{N}} \qquad d = d_N = 1 + \frac{r}{N} - \frac{\sigma}{\sqrt{N}} \qquad \bigwedge$$

Remark 3.1. There's no explicit formula for the option price for fixed N in the Binomial model. But there's a "nice" explicit formula when $N \to \infty$.

4. Central limit theorem (review).

Definition 4.1. We say X is a normally distributed random variable with mean μ and variance σ^2 if the PDF of X is

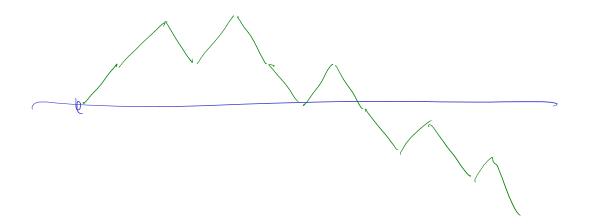
 $p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{\sqrt{2\pi\sigma^2}}\right)$

Remark 4.2. Notation: $X \sim \mathcal{N}(\mu, \sigma^2)$.

Remark 4.3. Normally distributed random variables are also called *Gaussian*.

$$\mu - mean \rightarrow \mu = EX$$

 $T \rightarrow var$
 $T^2 = E(X - \mu)$



 $\frac{(x-\mu)^2}{2\sigma^2}$

ve

amo

Let X_1, \ldots, X_n be a sequence of i.i.d. random variables, with $EX_n = 0$ and $\operatorname{Var} X_n = 1$. Let $S_0 = 0$, $S_n = \sum_{k=1}^n X_k$. Question 4.4. How does S_n behave as $n \to \infty$. Theorem 4.5 (Law of large numbers). $S_n/n \to 0$ as $n \to \infty$. Remark 4.6. Easy check: Compute $\operatorname{Var}(S_n/n)$.

 $E C_{M} = I E (I X_{k}) =$ Compute

fample Var $\left(\frac{S_{M}}{N}\right) = \frac{1}{N^{2}} Var \left(\frac{S_{M}}{N}\right)$ $=\frac{1}{\sqrt{2}}V_{av}\left(\frac{M}{2}X_{k}\right)$ $= \frac{1}{1^2} \sum_{k=1}^{\infty} \left(\frac{X_k}{2} \right) = \frac{M}{2}$

Theorem 4.7 (Central limit theorem). $S_n/\sqrt{n} \rightarrow \mathcal{N}(0,1)$. That is, for any bounded continuous function f, $\mathcal{N}(0,1)$. That is, for any bounded continuous function f, $\mathcal{N}(0,1)$. $\mathcal{N}(0,1)$. $\mathcal{N}(0,1)$. $V_{AW}\left(\frac{C_{N}}{\sqrt{n}}\right) = \frac{1}{n} V_{AW}\left(C_{M}\right) = \frac{N}{n} = 1$ Note $F_{1}\left(N(0,1)\right) = \left(\frac{1}{2}\left(x\right) + \left(x\right)\right)$ $f(x) = \frac{1}{\sqrt{2}} - \frac{2}{\sqrt{2}}$