LECTURE NOTES ON CONTINUOUS TIME FINANCE
FALL 2022

GAUTAM IYER

Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 152183.

E-mail address: gautam@math.cmu.edu.



Lecture 1 (1/19). Please enable video if you can.
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2. Syllabus Overview

o Class website and full syllabusmmath cmu.edu/~gautam/sj /teaching/2021-22/420-cts-time-fin
o TA’s: Jonghwa Park <jonghwap@andrew.cmu.edu>.

» Homework Due: 2:29P esdays. M
o Midterms: Wed 2/2 se book in class 4@\/0/

> Good quahty scans please! Use a scanning app, and not simply take photos. (I use Adobe Scan.)
> 20% penalty if turned in within an hour of the deadline. 100% penalty after that.
/?nework assignments can be turned in 24h late without penalty.
> Bottom Romework score is dropped from your grade (personal emergencies, interviews, other deadlines, etc.).
> Collabofhtion is encouraged. Homework is not a test — ensure you learn from doing the homework.
> You must write solutions independently, and can only turn in solutions you fully understand.
e Academic Integrity
> Zero tolerance for violations (automatic R).
> Violations include: '
— Not writing up solutions independently and/or plagiarizing solutions
— Turning in solutions you do not understand.
— Seeking, receiving or providing assistance during an exam.
> All violations will be reported to the university, and they may impose additional penalties.
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e Develop tools to price securities in continuous time.
> Brownian motion (not as easy as coin tosses)
> Conditional expectation: No explicit formula! (
> It6 formula: main tool used for computation. Develop some intuition.
> Measurablity / risk neutral measures: much more abstract. Complete description is technical. But we need a working knowledge.
> Derive and undeW/

> Fundamental theorems of asset pricing
> Asian options, Barrier options, etc.




(1) Binomial model: Wals (370). /
can trade continuously in time.

(2)

(3) Cons a market with a bank and a stock, Whose spot price at time ¢ is denoted b@

(4) The continuously compounded interest rate 1 (i.e. money in the bank grows like 0,

(5) Assume liquidity; neglect transaction costs (frrctronless and the borr lending Tates fHe‘sarne

(6) In the Black-Scholes setting, we model the stock prices by@@%@mth parameters and@the volatility).
(7) (Black-Scholes Formula) The price at time t of a European call with rnaturrty T and strike K is given by - —

(t m) = zN( d+ Ke_LT:f)N —t ,T)), ‘
= : s )M\/\/\Q
T - Tf% where Cii_a\/_< ( >+(rj:2)> \/%/ e V2 dy. (\/\/\*@/ (5(
(8) Can be obtained as the limit of the Binomial model as@% oo by choosing LM %—\)
7 Tbinom = N ) N \/—

r o -
U=unN = 14+ — d=d N = =1+ —
N VN
= L~
Remark 3.1. There’s no explicit formula for the option price for fixed N in the Binomial model. But there s a “nice” explicit formula when N — oo.




4. Central limit theorem (review).
Definition 4.1. We say X is a normally distributed random variable with mean/u gnd variance the PDF of X is

—_— Jp—

p() = —— exp(— M)Z) L@
\ /2’/TO'? 23-2 ) / w
Remark 4.2. Notation: X ~ N (u,c?). L/jf\/ h

Remark 4.3. Normally distributed random variables are also called Gaussian.
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Let X4, ..., X,, be a sequence ofandom variables, with EX,, =0 and Var X,, = 1. Let Sp =0, S, = > }_; X&.
Questm does S,, behave as n*— oo.

Theorem 4.5 (Law of large numbers). %Eﬂ(a} n — oo.
Remark 4.6. Easy check: Compute Var(.5,/n).
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eorem 4.7 (Central
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limit theorem). |S,,/v/n — N(0,1). That is, for any\bounded continuous functio




Lecture 2 (1/21). Please enable video if you can.
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Theorem 4.7 (Central limit theorem).hat is, for any bounded continuous function f,
p[(Fn ) = Bf(N(0.1













Let X be a random variable. ( 3 \f—\
Definition 4.8. The characteristic function of X is defined by <pX (A\) = Eel22 DX L= —4

2
Definition 4.9. The mmctwn (MGF) of X is defined by Mx()) = EerX. LY . Cﬂ
74 —= = c = B+ viml
Ezample 4.10. If X ~ N(0,1) then ¢y (\) = e~ /2 @w x(A) =M/ o
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Theorem 4.11. E

= (—i) <X>( 0) = M{(0). In particular, EX = —ig’ (0) = M%(0), and EX* = —¢/%(0)
Remark 4.12. Here f("(0) den

= Mx(0).
- —— -
s the n'" derivative of f at 0.
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Let X,Y be two random variables.

Theorem 4.13. The following are equivalent.

(1) X andY have the same distribution (PDF) /\NJ/) % %«v CL’[
(2) X and Y have the same CDF. Vv o Caw '
(8) X and Y have the same characteristic function.

(4) X and Y have the same moment generating function. \Z

Theorem 4.14) A sequence of random variables (X,,) — X (in distribution) if and only iflpx, — @x |pointwise.

Theorem 4.15. A sequence of random variables (X,,) — X (in distribution) if and only if Mx,, — Mx pointwise.

Remark 4.16. The proofs of Theorem 4.13—4.15 are beyond the scope of this course; we will use them without proof.
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Let X,Y be two random variables.
Theorem 4.13. The following are equivalent. ? ><, L %}
< 1) X and Y have the same distribution (PDF) C,D \‘/ O)&D x . P (‘7\) %ﬂ

2): X and Y have the same CDF. — =

(3) X andY have the same charatteristic function. - X% XC//\\K
4) X andY have the same moment generating function. / € J

Theorem 4.14. A sequence of random variables (X,,) = X (m distribution) if and only if #x, = Px pointwise.
—

Theorem 4.15. A sequence of random variables (X,,) — X (in distribution) if and only if MX — MX pointwise
T

Remark 4.16. The proofs of Theorem 4.13—4.15 are beyond the scope of this course; we will use them without proof.
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5. Stochastic Processes.

5.1. Brownian motion.
e Discrete time: Simple Random Walk.
> X, = >.7 &, where &’s are i.i.d. E§; = 0, and Range(¢;) = {£1}.
e Continuous time: Brownian motion.
>Y, =X, +({t—n)p41 ift € n,n+1).
> Repeat more frequently: Flip a coin every € seconds, and take a step of size /z.
> Rescale: Y7 = (/eY} /.. (Chose /e factor to ensure Var(Y;") ~ t.)
> Let Wy = gi_r)]%}/f.

Definition 5.1 (Brownian motion). The process W above is called a Brownian motion.

> Named after Robert Brown (a botanist).
> Definition is intuitive, but not as convenient to work with.



(t—s)/e
o Ift,s are multiples of e: Y7 — Y ~ /& Z & =% N(0,t — 5).

e Y — Y only uses coin tosses that are after s”, and so independent of Y.

Definition 5.2. Brownian motion is a continuous process such that:
(1) Wy — W5 ~N(0,t — s),
(2) Wi — W; is independent of F.
Remark 5.3. We will define Fy shortly. Intuitively, Fy is the set of all events that are “known” at time s
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5. Stochastic Processes.

5.1\ Browalin motion. /9 = A
¢ Discrete time: Simple Random Walk. \\ Y

> X, = >.] &, where &’s are i.i.d. E¢; = 0, and Range(&;) = {:I:l}
« Continuous time: Brownian motion. —

> Yy =Xy + (t=n)pyr ift € [,n+1). S
> }Tepeat more freun\ﬂ}y Flip a coin everyf@econds, and take a step of size @
> Rescale: Y = /Y;/.. (Chose /¢ factor to-ensure Var(YyF) ~ t.)

N
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Definition 5.1 (Brownian motion). The process L/%above is called a Brownian motion.
> Named after Robert Brown (a botanist).

> Definition is intuitive, but not as convenient to work with. \/ s \{Vl é’lukg O/lD
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(t—s)/e
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, and so independent of

efinition 5.2. Brownian motion is a continuous process such that:

(1) Wy =W, ~N(0,t—s),
(2) Wy — W, is independent of
SN

o If t,s are multiples of e Y;* —

o Y7 — Y only uses coin tosses that are Gl er 5

emark 5.3. We will define Fy shortly. Intuitively, F; is the set of all events that are “known” at time s.
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D YE only uses coin tosses that are after s”, and so independent of Y.

Deﬁnltlon 5.2. Brownian motion is a @uch that: w =0
0

(1) Wy =Wy ~ N(0,1 = 5),
(2) Wi — Wy is independent of @

o If ¢, s are multiples of e: Yf YS~

Remark 5.3. We will define F; shortly. Intuitively,@s the set of all events that are “known” at time s.
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5.2. Sample space, measure, and filtration. ) H\ j
o Discrete time: Sample space Q =(w1,...,wn)| s = UM l (1964
e View (w1,.-. ,wmwcto of a randoin walk.' ’

&\ Continuous time: Sample space (space of continuous functions).

> It’s infinite. No probability mass functiont
> Mathematically impossible|to define P{AJ for all A C Q.
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o Restrict our attention to@ subset of some sets A C €2, on which P can be defined. ﬁ/)
> G is ajo- algebra (Closed’countable U@der unions, complements, intersections. ) Q

e P s called an (QG) if:
@ G — [0,1], PTOy=T1; =1.
(XU B) = P() + P(B )lfABEQare(@ L mlv
"‘\“—"-“"' = . ':7\ A E ﬂfHAD)ov (M 603 (AA%
e Random variables are @h{nctlons of the sample space: \%
Require {X € A} € G for every “nice” A C R. }(W \ ( \)
M= \

> E.g. {X—I}EQ {X>5}€g {X€[3,4)}Eg ete.
Recall {X € A} = {w € Q| X(w) € A}. l
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Definition 5.5.is the unique random wvariable such that:

(1) E;X is F;-measurable. |
(2) For ever@ﬂg\)_{dpz Aggdp ( 0. EC@AE£<> — E @LAK>

Remark 5.6. Choosing A = 0 implies E(E:X) = EX.
- T—3 3

Proposition 5.7 (Useful properties of conditional expectation).

(1) If a, B € R are constants, X, Y, random variables Ey(aX + fY) = aE, X + SE.Y .

~%2) If X 20, then E;X > 0. Equality holds if and only - zfmost surely.

(3) (Tower property) If 0 < s < t, then E,(E,X) = E,X.

(4) If X is Fi measurable, and Y is any random variable, the Et(XY) XE,Y.

(5) If X is F; measurable, then E,X = X (follows by choosing Y =1 above). -

(6) If Y is independent of F;, then LE_t“Y Eﬁ; /E

Remark 5.8. These properties are exactly the same as in discrete time.



Lemma 5.9 (Independence Lemma). IfX is F; measurable, Y is independent of F;, and f f(z,y): R? — R is any function, then
Lw-\.,) —




Example 5.11. If 2( , }_/ are twq@andard normal random variables, find Ee*XY .
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5.4. Martingales. be e Gi Mo s H/b
7A

Definition 5.12. An adapted process M is a martingale if for every 0 < s < ¢, we have E;M; = M,.

_— = ==

Remark 5.13. As with discrete time, a martingale is a fair game: stopping based on information available today will not change your
expected return.



Proposition 5.14. motion is a martingal
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9.3. Constructlng Risk Neutral Measures. Suppose the market has only one stock whose price process satisfies

%‘]/71 I\A*/WC /& dSt = OétSt dt+UtSt th ( w w Lﬁj{\ >
Theorem\ 9.17. The (umque ) risk fleutral measure is given by dP = ZT dP, where J
1
Zr :exp —/ 0, AW, — -/ efdt) :
= 0 2 Jo

Proposition 9.18. The stock price satisfies

[ —

—> dS; = RSy dt + 045, dw,
where W is a Brownian motion under the risk neutral measu?
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9.4. Black Scholes Formula revisited.
e Suppose the interest rate R; = r (is constant in time).

« Suppose the price of the stock is a GBM( r) (both «, o are constant in time). Ag ﬁC g OXJ(, + \ré 5% {/D

Theorem 9.19. Consider a security that pays Vi = g(St) at maturity time T. The arbitrage free price of this security at any time
t < T is given by f(t,S;), where —

(7.4) flt,z) = /O; e"“lg@(g:ﬂexp(@—i)iig%ffy)_))eifi\di , T=T-—1.

Remark 9.20. This proves Proposition 7.8.
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Theorem 9.21 (Black Scholes Formula). The arbitrage free price of a European call with strike K and maturity T is given by:

(7.5) c(ii) = aN(d (T —t,z)) — Ke—f_:ﬂN(d, (T —t,x))
where

(7.6) d(r,z) 0—\1/; (m(%) +(r+ C’;)T) :

and -
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9.5. The Martingale Representation Theorem.

Theorem 9.23. If M, is a square integrable martingale with respect to the Brownian filtration, then there exists a predictable process
D such that Efg D?ds < oo and

t
Mt:MO—I—/ D, dWs.
0

Remark 9.24. A square integrable martingale is a martingale for which EM? < oo for all t.
Remark 9.25. For our purposes, think of a predictable process as a left continuous and adapted process.

Theorem 9.26. Consider the one stock market form Theorem 9.17.

(1) Any P martingale is the discounted wealth of a self financing portfolio (i.e. converse of Theorem 9.5 holds)
(2) Any Security with an Fp-measurable payoff is replicable, and so Theorem 9.7 holds for any Fr-measurable function V.
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9.5. The Martingale Representation Theorem. [// C"Q» M fdﬂ N Wgﬁ ‘9< \Vﬁ’b) E M’b = DO

Theorem 9.23. If M, is a square integrable martingale with respect to the Brownian filtration, then there exists a Erealc‘caBIe proc\esj

D such that E fot D?ds < o0 an ,\,_\/‘ —_—
B - . ‘ :

Mt = MO + / DS dWs . (M IQ M W\>

_ = 0 ] .

Remark 9.24. A square integrable martingale is a martingale for which EM? < oo for all t.

fuare tntegrase |
Remark 9.25. For our purposes, think of a Ws a@nd adapted process.
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Theerem 9.26. Consider the one stock market form 5Z"heo7“em 9.17. i/ Ag,t - %JDQJUOU—/ A\ g{ &W/b
ny P martingale is the discounted wealth of a self financing portfolio (i.e. converse of[Theorem 9.5 holds)

ny security with anlﬁ%@ payoff is replicable, and so Theorem 9.7 holds for T= surable function V.
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