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2. Syllabus Overview
• Class website and full syllabus: https://www.math.cmu.edu/~gautam/sj/teaching/2021-22/420-cts-time-fin
• TA’s: Jonghwa Park <jonghwap@andrew.cmu.edu>.
• Homework Due: 2:29PM, Wednesdays.
• Midterms: Wed 2/23, Mon 4/4 (closed book in class).
• Homework:

▷ Good quality scans please! Use a scanning app, and not simply take photos. (I use Adobe Scan.)
▷ 20% penalty if turned in within an hour of the deadline. 100% penalty after that.
▷ One homework assignments can be turned in 24h late without penalty.
▷ Bottom homework score is dropped from your grade (personal emergencies, interviews, other deadlines, etc.).
▷ Collaboration is encouraged. Homework is not a test – ensure you learn from doing the homework.
▷ You must write solutions independently, and can only turn in solutions you fully understand.

• Academic Integrity
▷ Zero tolerance for violations (automatic R).
▷ Violations include:

– Not writing up solutions independently and/or plagiarizing solutions
– Turning in solutions you do not understand.
– Seeking, receiving or providing assistance during an exam.

▷ All violations will be reported to the university, and they may impose additional penalties.
• Grading: 10% homework, 30% midterm, 60% final.
Course Outline.
• Develop tools to price securities in continuous time.

▷ Brownian motion (not as easy as coin tosses)
▷ Conditional expectation: No explicit formula!
▷ Itô formula: main tool used for computation. Develop some intuition.
▷ Measurablity / risk neutral measures: much more abstract. Complete description is technical. But we need a working knowledge.
▷ Derive and understand the Black-Scholes formula.
▷ Fundamental theorems of asset pricing
▷ Asian options, Barrier options, etc.



3. Introduction.
(1) Binomial model: Trade at discrete time intervals (370).
(2) Suppose now we can trade continuously in time.
(3) Consider a market with a bank and a stock, whose spot price at time t is denoted by St.
(4) The continuously compounded interest rate is r (i.e. money in the bank grows like ∂tC(t) = rC(t).
(5) Assume liquidity, neglect transaction costs (frictionless), and the borrowing/lending rates are the same.
(6) In the Black-Scholes setting, we model the stock prices by a Geometric Brownian motion with parameters α (the mean return rate) and σ (the volatility).
(7) (Black-Scholes Formula) The price at time t of a European call with maturity T and strike K is given by

c(t, x) = xN(d+(T − t, x)) − Ke−r(T −t)N(d−(T − t, x)) ,
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(8) Can be obtained as the limit of the Binomial model as N → ∞ by choosing:
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Remark 3.1. There’s no explicit formula for the option price for fixed N in the Binomial model. But there’s a “nice” explicit formula when N → ∞.



4. Central limit theorem (review).
Definition 4.1. We say X is a normally distributed random variable with mean µ and variance σ2 if the PDF of X is

p(x) = 1√
2πσ2

exp
�

−(x − µ)2

2σ2

�
.

Remark 4.2. Notation: X ∼ N (µ, σ2).
Remark 4.3. Normally distributed random variables are also called Gaussian.



Let X1, . . . , Xn be a sequence of i.i.d. random variables, with EXn = 0 and Var Xn = 1. Let S0 = 0, Sn = Pn
k=1 Xk.

Question 4.4. How does Sn behave as n → ∞.
Theorem 4.5 (Law of large numbers). Sn/n → 0 as n → ∞.
Remark 4.6. Easy check: Compute Var(Sn/n).



Theorem 4.7 (Central limit theorem). Sn/
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n → N (0, 1). That is, for any bounded continuous function f ,
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Let X be a random variable.

Definition 4.8. The characteristic function of X is defined by φX(λ) = EeiλX .

Definition 4.9. The moment generating function (MGF) of X is defined by MX(λ) = EeλX .

Example 4.10. If X ∼ N(0, 1) then φX(λ) = e−λ2/2, and MX(λ) = eλ2/2.







Theorem 4.11. EXn = (−i)nφ
(n)
X (0) = M

(n)
X (0). In particular, EX = −iφ′

X(0) = M ′
X(0), and EX2 = −φ′′

X(0) = M ′′
X(0).

Remark 4.12. Here f (n)(0) denotes the nth derivative of f at 0.



Let X, Y be two random variables.

Theorem 4.13. The following are equivalent.
(1) X and Y have the same distribution (PDF)
(2) X and Y have the same CDF.
(3) X and Y have the same characteristic function.
(4) X and Y have the same moment generating function.

Theorem 4.14. A sequence of random variables (Xn) → X (in distribution) if and only if φXn
→ φX pointwise.

Theorem 4.15. A sequence of random variables (Xn) → X (in distribution) if and only if MXn
→ MX pointwise.

Remark 4.16. The proofs of Theorem 4.13–4.15 are beyond the scope of this course; we will use them without proof.
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Proof of Theorem 4.7.











5. Stochastic Processes.
5.1. Brownian motion.
• Discrete time: Simple Random Walk.

▷ Xn =
Pn

1 ξi, where ξi’s are i.i.d. Eξi = 0, and Range(ξi) = {±1}.
• Continuous time: Brownian motion.

▷ Yt = Xn + (t − n)ξn+1 if t ∈ [n, n + 1).
▷ Repeat more frequently: Flip a coin every ε seconds, and take a step of size

√
ε.

▷ Rescale: Y ε
t =

√
εYt/ε. (Chose

√
ε factor to ensure Var(Y ε

t ) ≈ t.)
▷ Let Wt = lim

ε→0
Y ε

t .

Definition 5.1 (Brownian motion). The process W above is called a Brownian motion.

▷ Named after Robert Brown (a botanist).
▷ Definition is intuitive, but not as convenient to work with.



• If t, s are multiples of ε: Y ε
t − Y ε

s ∼ √
ε

(t−s)/εX

i=1
ξi

ε→0−−−→ N (0, t − s).

• Y ε
t − Y ε

s only uses coin tosses that are “after s”, and so independent of Y ε
s .

Definition 5.2. Brownian motion is a continuous process such that:
(1) Wt − Ws ∼ N (0, t − s),
(2) Wt − Ws is independent of Fs.

Remark 5.3. We will define Fs shortly. Intuitively, Fs is the set of all events that are “known” at time s.
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5.2. Sample space, measure, and filtration.
• Discrete time: Sample space Ω = (ω1, . . . , ωN ).
• View (ω1, . . . , ωN ) as the trajectory of a random walk.
• Continuous time: Sample space Ω = C([0, ∞)) (space of continuous functions).

▷ It’s infinite. No probability mass function!
▷ Mathematically impossible to define P (A) for all A ⊆ Ω.





• Restrict our attention to G, a subset of some sets A ⊆ Ω, on which P can be defined.
▷ G is a σ-algebra. (Closed countable under unions, complements, intersections.)

• P is called a probability measure on (Ω, G) if:
▷ P : G → [0, 1], P (∅) = 0, P (Ω) = 1.
▷ P (A ∪ B) = P (A) + P (B) if A, B ∈ G are disjoint.

▷ If An ∈ G, P
� ∞[

1
An

�
= lim

n→∞
P (An).

• Random variables are measurable functions of the sample space:
▷ Require {X ∈ A} ∈ G for every “nice” A ⊆ R.
▷ E.g. {X = 1} ∈ G, {X > 5} ∈ G, {X ∈ [3, 4)} ∈ G, etc.
▷ Recall {X ∈ A} = {ω ∈ Ω | X(ω) ∈ A}.







Definition 5.5. EtX is the unique random variable such that:
(1) EtX is Ft-measurable.
(2) For every A ∈ Ft,

Z

A

EtX dP =
Z

A

X dP

Remark 5.6. Choosing A = Ω implies E(EtX) = EX.

Proposition 5.7 (Useful properties of conditional expectation).
(1) If α, β ∈ R are constants, X, Y , random variables Et(αX + βY ) = αEtX + βEtY .
(2) If X ⩾ 0, then EtX ⩾ 0. Equality holds if and only if X = 0 almost surely.
(3) (Tower property) If 0 ⩽ s ⩽ t, then Es(EtX) = EsX.
(4) If X is Ft measurable, and Y is any random variable, then Et(XY ) = XEtY .
(5) If X is Ft measurable, then EtX = X (follows by choosing Y = 1 above).
(6) If Y is independent of Ft, then EtY = EY .

Remark 5.8. These properties are exactly the same as in discrete time.



Lemma 5.9 (Independence Lemma). If X is Ft measurable, Y is independent of Ft, and f = f(x, y) : R2 → R is any function, then
Etf(X, Y ) = g(Y ) , where g(y) = Ef(X, y) .

Remark 5.10. If pY is the PDF of Y , then Etf(X, Y ) =
Z

R
f(X, y) pY (y) dy.



Example 5.11. If X, Y are two independent standard normal random variables, find EeiXY .









5.4. Martingales.

Definition 5.12. An adapted process M is a martingale if for every 0 ⩽ s ⩽ t, we have EsMt = Ms.

Remark 5.13. As with discrete time, a martingale is a fair game: stopping based on information available today will not change your
expected return.



Proposition 5.14. Brownian motion is a martingale.

Proof.









9.3. Constructing Risk Neutral Measures. Suppose the market has only one stock whose price process satisfies
dSt = αtSt dt + σtSt dWt .

Theorem 9.17. The (unique) risk neutral measure is given by dP̃ = ZT dP , where

ZT = exp
�

−
Z T

0
θt dWt − 1

2

Z T

0
θ2

t dt
�

, θt = αt − Rt

σt
.

Proposition 9.18. The stock price satisfies
dSt = RtSt dt + σtSt dW̃ ,

where W̃ is a Brownian motion under the risk neutral measure.





9.4. Black Scholes Formula revisited.
• Suppose the interest rate Rt = r (is constant in time).
• Suppose the price of the stock is a GBM(α, σ) (both α, σ are constant in time).

Theorem 9.19. Consider a security that pays VT = g(ST ) at maturity time T . The arbitrage free price of this security at any time
t ⩽ T is given by f(t, St), where

f(t, x) =
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, τ = T − t .(7.4)

Remark 9.20. This proves Proposition 7.8.







Theorem 9.21 (Black Scholes Formula). The arbitrage free price of a European call with strike K and maturity T is given by:
c(t, x) = xN(d+(T − t, x)) − Ke−r(T −t)N(d−(T − t, x))(7.5)

where
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and

(7.7) N(x) def= 1√
2π

Z x

−∞
e−y2/2 dy ,

is the CDF of a standard normal variable.

Remark 9.22. This proves Corollary 7.9.









9.5. The Martingale Representation Theorem.

Theorem 9.23. If Mt is a square integrable martingale with respect to the Brownian filtration, then there exists a predictable process
D such that E

R t

0 D2
s ds < ∞ and

Mt = M0 +
Z t

0
Ds dWs .

Remark 9.24. A square integrable martingale is a martingale for which EM2
t < ∞ for all t.

Remark 9.25. For our purposes, think of a predictable process as a left continuous and adapted process.

Theorem 9.26. Consider the one stock market form Theorem 9.17.
(1) Any P̃ martingale is the discounted wealth of a self financing portfolio (i.e. converse of Theorem 9.5 holds)
(2) Any security with an FT -measurable payoff is replicable, and so Theorem 9.7 holds for any FT -measurable function VT .
(3) The risk neutral measure is unique.
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