21-370 Discrete Time Finance: Midterm 2.

2021-11-03

- This is an open book test. You may use your notes, homework solutions, books, and/or online resources (including software) while doing this exam.
- You may not, however, seek or receive assistance from a live human during the exam. This includes in person assistance, instant messaging, and/or posting on online forums / discussion boards. (Searching discussion boards is OK, though.)
- Unsupported (or unreadable) answers will not receive credit. Show your work and explain your solution.
- You must record yourself (audio, video and screen) and share it with me as instructed by email.
- Late submissions will not be accepted. Please ensure you allow yourself ample time to scan your exam, otherwise you will get zero credit.
- You have 60 minutes. The exam has a total of 3 questions and 40 points.
- The questions are roughly in order of difficulty; though depending on your intuition, some of you may feel differently. Nevertheless, I suggest looking over the entire exam before starting. Good luck \because.

10 1. Consider the N period binomial model with $N=3$ and interest rate $r=1 / 8$. At time n we flip a coin (that is independent of previous coin flips) and lands heads with probability 0.9 , and tails with probability 0.1 . Let S_{n} denote the stock price at time n, and suppose $S_{0}=\$ 20$. When the coin flips heads the stock price increases by 50% (i.e. $S_{n+1}=\frac{3}{2} S_{n}$.) When the coin flips tails the stock price decreases by 25% (i.e. $S_{n+1}=\frac{3}{4} S_{n}$.) Consider an American option with intrinsic value G, where

$$
G_{n}= \begin{cases}0 & n=0, \\ \max \left\{0, S_{n}-(1+r) S_{n-1}\right\} & n>0\end{cases}
$$

Let V_{n} denote the arbitrage free price of this option, and σ^{*} be the minimal optimal exercise policy for this option.
(a) Suppose $n=2$, the first coin toss is tails and the second coin toss is heads. In this case find the arbitrage free price, and determine whether or not $n \leqslant \sigma^{*}$.
(b) Suppose $n=2$, the first coin toss is heads and the second coin toss is tails. In this case find the arbitrage free price, and determine whether or not $n \leqslant \sigma^{*}$.
2. Consider the N period binomial model with $N=5$, with interest rate $r=1 / 2$. Let S_{n} denote the stock price at time n. At every time period, we flip a fair coin (independent of previous coins). If the coin lands heads, we set $S_{n+1}=2 S_{n}$. If the coin lands tails, we set $S_{n+1}=\frac{1}{2} S_{n}$. The stock price is initially $\$ 8$.
Let $\tau=\min \left\{n \leqslant N \mid S_{n} \notin(2,32)\right\}$, and let $\sigma=\min \{N, \tau\}$. A rebate option matures at time σ and pays the holder $\$ 6$ if $S_{\sigma} \geqslant 32$, pays $\$ 3$ if $S_{\sigma} \leqslant 2$, and pays nothing otherwise. Find the arbitrage free price of this option at time $n=1$. Also find the number of shares held in the replicating portfolio at time $n=1$. (Be sure you show the method/process you used to arrive at this answer. Unsupported answers will receive no credit.)
3. Let $p \in(0,1 / 2)$, and let ξ_{1}, ξ_{2}, \ldots be i.i.d. random variables with $\boldsymbol{P}\left(\xi_{1}=1\right)=\boldsymbol{P}\left(\xi_{1}=-1\right)=p$ and $\boldsymbol{P}\left(\xi_{1}=0\right)=1-2 p$. Let $b \in \mathbb{N}, b>1, X_{0} \in(0, b) \cap \mathbb{N}$, and define $X_{n+1}=X_{n}+\xi_{n+1}$.
(a) Find $\alpha, \beta \in \mathbb{R}$ so that $\alpha b^{2}+\beta b=0$ and the process $M_{n}=\alpha X_{n}^{2}+\beta X_{n}-n$ is a martingale.
(b) Let $\tau=\min \left\{n \in \mathbb{N} \mid X_{n} \notin(0, b)\right\}$. Find $\boldsymbol{E} \tau$.
[Note: Even though the stopping time τ is not bounded, you may assume the optional sampling theorem applies.]

