Lecture 36 (12/3). Please enable video if you can.
Than $($ hast time $): \xi_{x} \rightarrow$ ind $P\left(\xi_{n}=1\right)=P\left(\xi_{m}=-1\right)=\frac{1}{2}$

$$
S_{x}=\sum_{1}^{n} \xi_{k} \quad S_{0}=0
$$

S is veer at at 0 if

$$
P\left(\left\{S_{n}=0 \text { for insiotely many } n\right\}\right)=1
$$

Thun(Last time): In $\operatorname{dim} d=1$ or 2 , the $R W$ is nee In dim $d \geqslant 3$ the RU is NOT we.

- Let $\tau_{1}=\min \left\{\underline{n}>0 \mid \underline{S}_{n}=0\right\}$, be the first time S returns to 0 .
- Let $\overline{\bar{\tau}_{2}}=\min \left\{n>\tau_{1} \mid S_{n}=0\right\}$, be the first time after τ_{1} that S returns to 0 .
- Let $\overline{\tau_{k+1}}=\min \left\{n \overline{>} \tau_{k} \mid S_{n}=0\right\}$, be the first time after τ_{k} that S returns to 0 .

Lemma 9.5. S is recurrent at 0 if and only if $\boldsymbol{P}\left(\tau_{\boldsymbol{p}}<\infty\right)=1$.

$$
\begin{aligned}
& \text { (By 9.5, } \sum P\left(s_{n}=0\right)=\infty \Leftrightarrow S \text { is recentat at } 0 \text {) } \\
& \rightarrow P f: 0 E\left(\text { (thmes } m+S_{m}=0\right)=\sum_{n=0}^{\infty} P\left(S_{n}=0\right)_{\text {伎 }} \\
& \left(\because E\left(\# t_{\text {mos }} m+S_{m}=0\right)=E\left(\sum_{m} \mathbb{1}_{\left\{S_{m}\right.}=0\right\}\right) \\
& =\sum_{M} E \mathbb{1}_{\left\{S_{m}=0\right\}}=
\end{aligned}
$$

$$
\begin{aligned}
& \text { (2) } \begin{aligned}
& E\left(\# t_{\text {imes } m}+S_{m}=0\right)=\frac{1}{1-P\left(\tau_{1}<\infty\right)} \\
& \begin{aligned}
P f: E\left(\# t_{\text {ims }} m+S_{m}=0\right) & =E\left(\sum_{n=1}^{\infty} \frac{V_{1}}{\left.q_{n}<\infty\right\}}\right)^{2} \\
& =\sum_{n=1}^{\infty} P\left(\tau_{n}<\infty\right)
\end{aligned} \\
&=\sum_{n=1}^{\infty} P\left(\tau_{1}<\infty\right)^{n} \\
&=\frac{P\left(\tau_{1}<\infty\right)}{1-P\left(\tau_{1}<\infty\right)} \quad\left(\because P\left(\tau_{2}<\infty\right)=P\left(\tau_{1}<\infty\right)^{2}\right)
\end{aligned}
\end{aligned}
$$

Equale (1) \&(2): $E\left(\# t_{\text {ims }} m+S_{m}=0\right)=\sum P\left(S_{u}=0\right)=\frac{P\left(\tau_{1}<\infty\right)}{1-P\left(\tau_{1}<\infty\right)}$

$$
\Rightarrow \quad \sum P\left(S_{n}=0\right)=\infty \Leftrightarrow P\left(\tau_{1}<\infty\right)=1
$$

QED.

Theorem 9.7. $\boldsymbol{P}\left(S_{2 m}=0\right)=O\left(1 / m^{d / 2}\right)$. Consequently, the random walk is recurrent for $d \leqslant 2$, and transient for $d \geqslant 3$.

$$
S_{m}=R \omega \text { in } d \operatorname{dim} \text {. }
$$

$$
\text { Asang } P\left(S_{2 m}=0\right)=O\left(\frac{1}{\frac{1}{}^{d / 2}}\right) \text {. }
$$

Then S is re at $0 \Leftrightarrow \sum P\left(S_{n}=0\right)=\infty$

$$
\begin{aligned}
& \Leftrightarrow \sum P\left(s_{2 n}=0\right)=\infty \\
& \Leftrightarrow \sum_{n=1}^{\infty} \frac{1}{n^{d / 2}}=\infty
\end{aligned}
$$

Nole Coupurisen tect: $\sum \frac{1}{n^{s}}<\infty \Leftrightarrow s>1$
$\therefore S$ is me at $0 \Leftrightarrow d / 2 \leqslant 1 \Leftrightarrow d \leqslant 2$ QED.
Conpte $P\left(S_{2 u}=0\right)$

$$
\begin{aligned}
d=1: \quad P\left(S_{2 n}=0\right) & =\binom{2 n}{u} \cdot\left(\frac{1}{2}\right)^{n}\left(\frac{1}{2}\right)^{n} \\
& =\frac{1}{2^{2 n}}\binom{2 n}{n}=\frac{1}{2^{\frac{1}{n}}} \frac{(2 n)!}{(n!)^{2}} \ldots \theta
\end{aligned}
$$

Lemma 9.8 (Sterling's formula). For large n, we have

$$
\stackrel{n!}{=} \approx \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{\underline{n}}=\underbrace{\sqrt{2 \pi}} \exp (\underbrace{n \ln n-n}+\frac{\ln n}{2}) .
$$

$$
\left.\begin{array}{l}
\text { (Intution: } u!=\prod_{k=1}^{n} k=e^{\sum_{k=1}^{n}(\ln k)} \\
\sum_{k=1}^{n} \ln k \quad \int_{k}^{n} \ln x \quad d x=n \ln n-n
\end{array}\right)
$$

Prodf of Thearem 9.\% for d二人:

$$
\begin{aligned}
& \quad \approx \frac{1 \sqrt{2}}{2^{2 n} \sqrt{2 \pi}} \frac{\sqrt{u}}{u} \frac{(2 x)^{2 x}}{u^{2 u}} \\
& \\
& \approx \frac{1}{\sqrt{n}} \frac{1}{\sqrt{x}} \\
& \Rightarrow \text { Thu for } d=1 \text { QED }
\end{aligned}
$$

Remark 9.9. Recall the Gambler's ruin example (Question 6.50): Let ξ_{n} be i.i.d. random variables with mean 0 , and let $X_{n}=\sum_{1}^{n} \xi_{k}$. Let $\tau=\min \left\{n \mid X_{n}=1\right\}$. Theorem 9.7 proves $\tau<\infty$ almost surely. We proved earlier $\underbrace{\boldsymbol{E} X_{\tau}=1}$ and $\lim _{N \rightarrow \infty} \underbrace{\boldsymbol{E} X_{\tau \wedge N}=0}$

Theorem 9.10. Consider the Gamblers ruin example, with $\tau=\min \left\{n \mid X_{n}=1\right\}$. Then

$$
\boldsymbol{E} \tau=\infty \quad \text { and } \quad \boldsymbol{P}(\tau=2 n-1)=(-1)^{n-1}\binom{1 / 2}{n} \approx \frac{C}{n^{3 / 2}}
$$

Remark 9.11. Let $M_{n}=\min \left\{X_{\tau \wedge k} \mid k \leqslant \underline{n}\right\}$. Then $\boldsymbol{E} M_{\tau}=-\infty$. Thus, this strategy will take (on average) an infinite time before you win $\$ 1$. During that time your expected maximum loss is $-\infty$.
Lemma 9.12. Let $F(x)=\underline{\boldsymbol{E} x^{\tau}}$. Then $F(x)=\frac{1}{x}\left(1-\sqrt{1-x^{2}}\right)$.
Pf:

$$
\begin{aligned}
F(x) & =E x^{\tau} \\
& =\frac{1}{2} x^{1}+\frac{1}{2} E x^{\tau^{\prime}+\tau^{\prime \prime}+1}
\end{aligned}
$$

$$
\Sigma^{\prime}=\text { inst time } X_{n} \text { rears } 0 \text { starting from }-1
$$

$\tau^{\prime \prime}=$ first time after τ^{\prime}, X_{n} rectus $+I$
dist of $\tau^{\prime}=$ diet of $\tau^{\prime \prime}=\operatorname{dict}$ of $\tau \& \tau^{\prime \prime} \& \tau^{\prime}$ are ind

$$
\begin{aligned}
\Rightarrow E x^{\tau} & =\frac{1}{2} x+\frac{1}{2} \quad x E x^{\tau^{\prime}} E x^{\tau^{\prime \prime}} \\
& =\frac{1}{2} x+\frac{x}{2}\left(E x^{\tau}\right)^{2} \Rightarrow F(x)=E x^{\tau}=\frac{x}{2}+\frac{x}{2} F(x)^{2}
\end{aligned}
$$

Salve for $F(x)$ \& get the facile.

$$
f(x)=
$$

Proof of Theorem 9.10
(1)

$$
\begin{aligned}
& E \tau=\infty \\
& P f: F(x)=E x^{\tau}=\frac{1-\sqrt{1-x^{2}}}{x}
\end{aligned}
$$

Inff wort $x: F^{\prime}(x)=E \tau x^{\tau-1}$

$$
\text { Pat } x=1: \quad F^{\prime}(1)=E \tau
$$

Fival $F^{\prime}(1)$ fram foume \&git $E \tau=+\infty$!
(2) Find $P(\tau=n)$

Kax $E x^{\tau}=F(x)=\frac{1-\sqrt{1-x^{2}}}{x}$

$$
\begin{aligned}
E x^{\tau} & =1 P(\tau=0)+x P(\tau=1)+x^{2} P(\tau=2)+\cdots \\
& =\sum_{k=0}^{\infty} x^{k} P(\tau=k)
\end{aligned}
$$

Alof $F(x)=E x^{2}=\frac{1-\sqrt{1-x^{2}}}{x}$. Tay|r saies * find a foules.

