Lecture 35 (12/1). Please enable video if you can.
"Randan walk in contrumans time"

$$
\begin{aligned}
& P\left(\xi_{n}=1\right)=P\left(\xi_{n}=-1\right)=\frac{1}{2} \\
& X_{n}=\sum_{k=1}^{n} \xi_{k}
\end{aligned}
$$

\Leftarrow Cts time RW: fop a coin every $\frac{1}{N}$ seconds \& tate a step of cine $\frac{1}{\sqrt{N}}$ left or right

Menton

8. Black-Scholes Formula

(1) Suppose now we can trade continuously in time.
(2) Consider a market with a bank and a stock, whose spot price at time t is denoted by S_{t}.
(3) The continuously compounded interest rate is r (i.e. money in the bank grows like $\partial_{t} C(t)=r C(t)$.
(4) Assume liquidity, neglect transaction costs (frictionless), and the borrowing/lending rates are the same.
(5) In the Black-Scholes setting, we model the stock prices by a Geometric Brownian motion with parameters α (the mean return rate) and σ (the volatility).
(6) The price at time t of a European call with maturity T and strike K is given by

$$
\rightarrow c(t, x)=x N\left(d_{+}(\underline{T}-t, x)\right)-K e^{-r(T-t)} N\left(d_{-}(T-t, x)\right),
$$

where $\quad d_{ \pm}=\frac{1}{(\sigma \sqrt{\tau}}\left(\underline{\underline{\underline{n}}}\left(\frac{x}{\underline{K}}\right)+\left(r \pm \frac{\sigma^{2}}{2}\right) \underline{=}\right), \quad \underline{N}(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-y^{2} / 2} d y$.

$$
1\left(1,(x),\left(\sigma^{2}\right)=-x\right.
$$

(7) Can be obtained as the limit of the Binomial model as $N \rightarrow \infty$ by choosing:

$$
\begin{array}{r}
r_{\text {binom }}=\frac{r}{\underline{N}}, \quad \underline{u}=u_{N}=1+\frac{r}{N}+\left(\frac{\sigma}{\sqrt{N}}\right. \\
u_{N}-d=\frac{2 \sigma}{\sqrt{N}}
\end{array}
$$

9. Recurrence of Random Walks

- Let ξ_{n} be a sequence of i.i.d. coin flips with $\boldsymbol{P}\left(\xi_{n}=1\right)=\boldsymbol{P}\left(\xi_{n}=-1\right)=1 / 2$.
- Simp̄̄le random walk: $S_{n}=\sum_{1}^{n} \xi_{k}$ (i.e. $\left.S_{0}=0, S_{n+1}=S_{n}+\xi_{n+1}\right)$.

Question 9.2. Is the random walk (in one dimension) recurrent at 0? How about at any other value?
Question 9.3. Say ξ_{n} are i.i.d. random vectors in \mathbb{R}^{d} with $\boldsymbol{P}\left(\xi_{n}= \pm e_{i}\right)=\frac{1}{2 d}$. Set $S_{n}=\sum_{1}^{n} \xi_{k}$. Is S_{n} recurrent at 0?

- Let $\tau_{0}=\min \left\{n \mid S_{n}=0\right\}$, be the first time S returns to 0 .
- Let $\overline{\tau_{1}}=\min \left\{n \neq \tau_{0} \mid S_{n}=0\right\}$, be the first time after τ_{0} that S returns to 0 .
- Let $\frac{\overline{\overline{\tau_{k}}}}{}=\min \left\{n \overline{\bar{\gamma}} \tau_{k} \mid S_{n}=0\right\}$, be the first time after τ_{k} that S returns to 0 .

Lemma 9.5. $\underbrace{S \text { is recurrent at } 0}$ if and only if $\mid \boldsymbol{P}\left(\tau_{0}<\infty\right)=1$.
\uparrow
$P\left(S_{\text {n }}\right.$ velum to 0 impartly op tam $)=$

Pf: (1) Say S is wee do
$\Rightarrow P\left(S_{n}\right.$ wether to 0 i.0. $)=1 \Rightarrow P\left(S_{n}\right.$ values to 0 ones $)=1$

$$
\Rightarrow P\left(\tau_{0}<\infty\right)=1
$$

(2) Lamvesaly $\operatorname{Sog} P\left(\tau_{0}<\infty\right)=1$

Note $P\left(\tau_{\jmath}<\infty\right)=P\left(\tau_{0}<\infty\right)^{2}$
sod
Oals of retuing twise

By nonl: $P\left(\tau_{n}<\infty\right)=P\left(\tau_{0}<\infty\right)^{n}=1 \Rightarrow P\left(S_{n}\right.$ athess $t_{0} 0$ i.0. $)=1$.

Lemma 9.6. $\boldsymbol{P}\left(\tau_{0}<\infty\right)=1$ if and only if $\sum \boldsymbol{P}\left(S_{n}=0\right)=\infty$.
Proof.

$$
\begin{aligned}
\Leftrightarrow & P\left(\tau_{0}<\infty\right)=1 \\
\Leftrightarrow & P\left(S_{n} \text { nether to } 0 \text { in. }\right)=1 . \\
& \left(\text { Ie. } S_{n} \text { is ne rent it } 0\right) .
\end{aligned}
$$

