Lecture 34 (11/29). Please enable video if you can.
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7.4. Examples and Consequences.

Proposition 7.16. Suppose the market model Section 7.1 is complete and arbitrage free, and let P be the unique risk neutral measure.
If& is a P martingale, then X must be the wealth of a self financing portfolio.

R A
emark 7.17. We've already seen in Lemma 7.5 that if a (not necessarily unique) risk neutral measure exists, then the discounted wealth
f any self financing portfolio must be a martingale under it.

Remark 7.18. All pricing results/formulae we derived for the Binomial model that only relied on the analog of Proposition 7.16 will hold
in complete arbitrage free markets.
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Question 7.19. Consider a market consisting of a bank with interest rate r, and two stocks with price processes S1, 82, At each time
step we flip two independent coins. The price of the i-th stock (i € {1, 2}) changes by factor Ui, or g d depending on whether the i-th coin
is heads or tails. When is this market arbztmge free? When is this market complete?
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Question 7.20. Consider now repeated rolls of a 3-sided die and for i € {1,2}, suppose S};H f” v if wnH = j. How do you find
the risk neutral measure? Find conditions when this market is complete and arbitrage free”
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8. Black-Scholes Formula

(1) Suppose now we can trade continuously in time.

(2) Consider a market with a bank and a stock, whose spot price at time ¢ is denoted by S;.

(3) The continuously compounded interest rate is r (i.e. money in the bank grows like 0;C(t) = rC(t).

(4) Assume liquidity, neglect transaction costs (frictionless), and the borrowing/lending rates are the same.

(5) In the Black-Scholes setting, we model the stock prices by a Geometric Brownian motion with parameters a (the mean return
rate) and o (the volatility).

(6) The price at time ¢ of a European call with maturity 7" and strike K is given by

c(t,x) = aN(d(T —t,z)) — Ke "T"ON(d_(T — t,z)),

where di:%ﬁ(ln(%>+<rj:%>7), N(m):\/%/_;e_fpdy.

(7) Can be obtained as the limit of the Binomial model as N — oo by choosing:
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9. Recurrence of Random Walks

o Let &, be a sequence of i.i.d. coin flips with P(§, =1) = P(§, = —-1) =1/2.
o Simple random walk: S, = Y7 & (i.e. So =0, Spt1 = Sp + &nt).

Definition 9.1. The process S,, is recurrent at 0 if P(S,, = 0 infinitely often ).



Question 9.2. Is the random walk (in one dimension) recurrent at 07 How about at any other value?

Question 9.3. Say &, are i.i.d. random vectors in R? with P (&, = +e;) = ﬁ. Set Sy, = >.1 &k Is Sy, recurrent at 07



Theorem 9.4. The simple random walk in R? is recurrent for d = 1,2 and transient for d > 3.



o Let 79 = min{n | S, = 0}, be the first time S returns to 0.
o Let 1 = min{n > 79| S,, = 0}, be the first time after 7y that S returns to 0.
o Let 7441 = min{n > 7% | S,, = 0}, be the first time after 7, that S returns to 0.

Lemma 9.5. S is recurrent at 0 if and only if P(1o < 00) = 1.



Lemma 9.6. P(19 < 00) =1 if and only if Y P(S, =0) = oco.
Proof.



Theorem 9.7. P(Ss,, =0) = O(1/m%?). Consequently, the random walk is recurrent for d < 2, and transient for d > 3.



Lemma 9.8 (Sterling’s formula). For large n, we have

1
n! ~ \/27rexp(nlnn—n—|— 5)



Proof of Theorem 9.7 for d = 1:



