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7.4. Examples and Consequences.

Proposition 7.16. Suppose the market model Section 7.1 is complete and arbitrage free, and let P̃ be the unique risk neutral measure.
If DnXn is a P̃ martingale, then Xn must be the wealth of a self financing portfolio.

Remark 7.17. We’ve already seen in Lemma 7.5 that if a (not necessarily unique) risk neutral measure exists, then the discounted wealth
of any self financing portfolio must be a martingale under it.

Remark 7.18. All pricing results/formulae we derived for the Binomial model that only relied on the analog of Proposition 7.16 will hold
in complete arbitrage free markets.









Question 7.19. Consider a market consisting of a bank with interest rate r, and two stocks with price processes S1, S2. At each time
step we flip two independent coins. The price of the i-th stock (i ∈ {1, 2}) changes by factor ui, or di depending on whether the i-th coin
is heads or tails. When is this market arbitrage free? When is this market complete?











Question 7.20. Consider now repeated rolls of a 3-sided die and for i ∈ {1, 2}, suppose Si
n+1 = fi,jSi

n, if ωn+1 = j. How do you find
the risk neutral measure? Find conditions when this market is complete and arbitrage free.







8. Black-Scholes Formula
(1) Suppose now we can trade continuously in time.
(2) Consider a market with a bank and a stock, whose spot price at time t is denoted by St.
(3) The continuously compounded interest rate is r (i.e. money in the bank grows like ∂tC(t) = rC(t).
(4) Assume liquidity, neglect transaction costs (frictionless), and the borrowing/lending rates are the same.
(5) In the Black-Scholes setting, we model the stock prices by a Geometric Brownian motion with parameters α (the mean return

rate) and σ (the volatility).
(6) The price at time t of a European call with maturity T and strike K is given by

c(t, x) = xN(d+(T − t, x)) − Ke−r(T −t)N(d−(T − t, x)) ,
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(7) Can be obtained as the limit of the Binomial model as N → ∞ by choosing:
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9. Recurrence of Random Walks
• Let ξn be a sequence of i.i.d. coin flips with P (ξn = 1) = P (ξn = −1) = 1/2.
• Simple random walk: Sn =

�n
1 ξk (i.e. S0 = 0, Sn+1 = Sn + ξn+1).

Definition 9.1. The process Sn is recurrent at 0 if P (Sn = 0 infinitely often ).



Question 9.2. Is the random walk (in one dimension) recurrent at 0? How about at any other value?

Question 9.3. Say ξn are i.i.d. random vectors in Rd with P (ξn = ±ei) = 1
2d . Set Sn =

�n
1 ξk. Is Sn recurrent at 0?



Theorem 9.4. The simple random walk in Rd is recurrent for d = 1, 2 and transient for d � 3.



• Let τ0 = min{n | Sn = 0}, be the first time S returns to 0.
• Let τ1 = min{n � τ0 | Sn = 0}, be the first time after τ0 that S returns to 0.
• Let τk+1 = min{n � τk | Sn = 0}, be the first time after τk that S returns to 0.

Lemma 9.5. S is recurrent at 0 if and only if P (τ0 < ∞) = 1.



Lemma 9.6. P (τ0 < ∞) = 1 if and only if
�

P (Sn = 0) = ∞.

Proof.



Theorem 9.7. P (S2m = 0) = O(1/md/2). Consequently, the random walk is recurrent for d � 2, and transient for d � 3.



Lemma 9.8 (Sterling’s formula). For large n, we have
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Proof of Theorem 9.7 for d = 1:


