Lecture 34 (11/29). Please enable video if you can.

Rocall : FTAPI : No and
$$\iff$$
 Existence of a RNM.
FTAP 2 : No and 2 complementaries \iff Existence & might a RNM
Every see can be replicated.
So The Stades.
St J

7.4. Examples and Consequences.

Proposition 7.16. Suppose the market model Section 7.1 is complete and arbitrage free, and let \tilde{P} be the unique risk neutral measure. If $D_n X_n$ is a \tilde{P} martingale, then X_n must be the wealth of a self financing portfolio.

Remark 7.17. We've already seen in Lemma 7.5 that if a (not necessarily unique) risk neutral measure exists, then the discounted wealth of any self financing portfolio must be a martingale under it.

Remark 7.18. All pricing results/formulae we derived for the Binomial model that only relied on the analog of Proposition 7.16 will hold in complete arbitrage free markets.

Machet is camplete: $\Rightarrow \exists A_{N-1} (\pounds_{N-1} - heas) \neq \chi_N = \Delta_{N-1} \cdot S_N$

 $\underbrace{\mathcal{C}}_{\text{nim}} \quad X_{\text{N-1}} = A_{\text{N-1}} \cdot S_{\text{N-1}}$

H& Know XN = AN-1. SN

 \rightarrow $D_N X_N = A_{N-1} \cdot (D_N S_N)$

 $\implies \widetilde{E}_{N-1}(\mathcal{D}_N \chi_N) = \Delta_{N-1} \cdot \left(\widetilde{E}_{N-1}(\mathcal{D}_N \varsigma_N) \right)$

(" D_NX_N is a P my

": By lef of P Dn Sn is a Fing

 $\implies D_{N-1} X_{N-1} - \Delta_{N-1} \cdot (D_{N+1} S_{N-1})$

 $\Rightarrow X = \Delta \cdot S_{N-1} \cdots (x)$ RED.

Repeat: Det at completenes =) $\exists \Delta_{N-2} + \chi_{N-1} = \Delta_{N-2} \cdot S_{N-1} - (\chi_{N-1})$

By above, get $X_{N-2} = A_{N-2} \circ S_{N-2}$ Keep going & get the trading strat (In) Note : this trading strat is self fin by equating (+) & (+ x) (& mekeoting)

Question 7.19. Consider a market consisting of a <u>bank</u> with interest rate r, and <u>two</u> stocks with price processes S^1 , S^2 . At each time step we flip two independent coins. The price of the *i*-th stock ($i \in \{1,2\}$) changes by factor \underline{u}_i , or \underline{d}_i depending on whether the *i*-th coin is heads or tails. When is this market arbitrage free? When is this market complete?

N Ь

And fine () a RNM. F, & RN Prot of hears & tails. Nevel (1) \overleftarrow{f} \overrightarrow{fq} = 1, \overleftarrow{f} , \overrightarrow{q} > 0 (2) $E_n S'_{n+1} = (1+r) S'_n \longrightarrow \tilde{E}_n S'_{n+1} = \tilde{F}_n S'_n + \tilde{f}_n S'_n$ $(2) \quad (2) \quad (2)$ $= \left(\overbrace{p}^{\prime} u_{1} + \widetilde{q} d_{1} \right) S_{1}^{\prime}$ $Want = (1+m) S_1$

Rule of think: To get a complete & art fine modet both d stockes, M.M., coill need to voll a dt 1 sided die

(While down equipor RNM. set (#astocles + 1) equis in (# faces of the die) unknownes

Question 7.20. Consider now repeated rolls of a 3-sided die and for $i \in \{1, 2\}$, suppose $S_{n+1}^i = f_{i,j}S_n^i$, if $\omega_{n+1} = j$. How do you find the risk neutral measure? Find conditions when this market is complete and arbitrage free.

$$(j \in \{1, j^2, 3\}).$$

WM:
$$f_{1} = Preb \ the die rolls i
System of eq: $() f_{1} + f_{2} + f_{3} = 1$
 $() f_{1} + f_{2} + f_{3} = 1$
 $() f_{1} + f_{2} + f_{3} + f_{3} = 1 + 7$
 $() f_{1} + f_{2} + f_{2} + f_{3} + f_{3} = 1 + 7$
 $() f_{1} + f_{2} + f_{2} + f_{3} + f_{3} = 1 + 7$
 $() f_{1} + f_{2} + f_{3} + f_{3} + f_{3} + f_{3} = 1 + 7$$$

 $(X): \Delta_n = ?$ Kwasy so that $\Delta_0 \cdot S_1 = V$ Cheeral Do $\Delta_{0}^{0}S_{1}(1) + \Delta_{0}^{0}S_{1}(1) + \Delta_{0}^{0}S_{1}(1) = V_{1}(1)$ $\frac{d}{2} \Delta_0^i S_1^i {\binom{o}{2}} = V_1 {\binom{i}{2}} \leftarrow d+1 \text{ equitions} \\ (\text{one for each } j)$ $\begin{pmatrix} Hr & \xi_{1,1} & \xi_{2,1} \\ Hr & \xi_{1,2} & \xi_{2,2} \\ Hr & \xi_{1,3} & \xi_{2,2} \end{pmatrix} \begin{pmatrix} A_0 \\ A_0 \\ A_0 \\ B_0 \end{pmatrix} = \begin{pmatrix} V_1(1) \\ V_1(2) \\ V_1(3) \end{pmatrix} \qquad (each A_0)$

8. Black-Scholes Formula

- (1) Suppose now we can trade *continuously in time*.
- (2) Consider a market with a bank and a stock, whose spot price at time t is denoted by S_t .
- (3) The continuously compounded interest rate is r (i.e. money in the bank grows like $\partial_t C(t) = rC(t)$.
- (4) Assume liquidity, neglect transaction costs (frictionless), and the borrowing/lending rates are the same.
- (5) In the *Black-Scholes* setting, we model the stock prices by a *Geometric Brownian motion* with parameters α (the mean return rate) and σ (the volatility).
- (6) The price at time t of a European call with maturity T and strike K is given by

$$c(t,x) = xN(d_{+}(T-t,x)) - Ke^{-r(T-t)}N(d_{-}(T-t,x)),$$

where $d_{\pm} = \frac{1}{\sigma\sqrt{\tau}} \left(\ln\left(\frac{x}{K}\right) + \left(r \pm \frac{\sigma^{2}}{2}\right)\tau \right), \qquad N(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-y^{2}/2} \, dy.$

(7) Can be obtained as the limit of the Binomial model as $N \to \infty$ by choosing:

$$r_{\text{binom}} = \frac{r}{N}, \qquad u = u_N = 1 + \frac{r}{N} + \frac{\sigma}{\sqrt{N}} \qquad d = d_N = 1 + \frac{r}{N} - \frac{\sigma}{\sqrt{N}}$$

9. Recurrence of Random Walks

- Let ξ_n be a sequence of i.i.d. coin flips with $P(\xi_n = 1) = P(\xi_n = -1) = 1/2$.
- Simple random walk: $S_n = \sum_{k=1}^{n} \xi_k$ (i.e. $S_0 = 0, S_{n+1} = S_n + \xi_{n+1}$).

Definition 9.1. The process S_n is recurrent at 0 if $P(S_n = 0 \text{ infinitely often })$.

Question 9.2. Is the random walk (in one dimension) recurrent at 0? How about at any other value?

Question 9.3. Say ξ_n are *i.i.d.* random vectors in \mathbb{R}^d with $P(\xi_n = \pm e_i) = \frac{1}{2d}$. Set $S_n = \sum_{i=1}^n \xi_k$. Is S_n recurrent at 0?

Theorem 9.4. The simple random walk in \mathbb{R}^d is recurrent for d = 1, 2 and transient for $d \ge 3$.

- Let $\tau_0 = \min\{n \mid S_n = 0\}$, be the first time S returns to 0.
- Let $\tau_1 = \min\{n \ge \tau_0 \mid S_n = 0\}$, be the first time after τ_0 that S returns to 0.
- Let $\tau_{k+1} = \min\{n \ge \tau_k \mid S_n = 0\}$, be the first time after τ_k that S returns to 0.

Lemma 9.5. S is recurrent at 0 if and only if $P(\tau_0 < \infty) = 1$.

Lemma 9.6. $P(\tau_0 < \infty) = 1$ if and only if $\sum P(S_n = 0) = \infty$.

Proof.

Theorem 9.7. $P(S_{2m} = 0) = O(1/m^{d/2})$. Consequently, the random walk is recurrent for $d \leq 2$, and transient for $d \geq 3$.

Lemma 9.8 (Sterling's formula). For large n, we have

$$n! \approx \sqrt{2\pi} \exp\left(n \ln n - n + \frac{1}{2}\right).$$

Proof of Theorem 9.7 for d = 1: