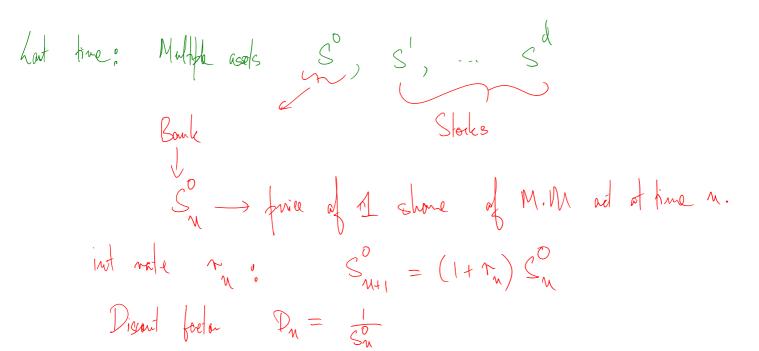
Lecture 31 (11/17). Please enable your video if you can.



Notation: subscent
$$\rightarrow$$
 time (n)
super sent $i \rightarrow i^{th}$ is stack.
RNM: $P + \forall i \in \mathcal{L}_{1}, \dots d\xi$, $E_{n}(D_{n+1}S_{n+1}) = D_{n}S_{n}^{i}$
(Note for $i=0$, $D_{n}S_{n}^{0} = D_{n+1}S_{n+1}^{0} = 1$
 $\Rightarrow \tilde{E}_{n}(D_{n+1}S_{n+1}^{0}) = D_{n}S_{n}^{0}$)
Last time: FTAP 1: \tilde{O} If a RNM exide then there is no arts.

(proved last time)

(b) No arb => => => = a RNM (ned not be signe) (IOU Proof -> today).

Corollary 7.6. Suppose the market has a risk neutral measure \tilde{P} . Let V_N be a \mathcal{F}_N -measurable random variable and consider an security that pays V_N at time N. Then $V_n = D_n^{-1} \tilde{E}_n(D_N V_N)$ is a arbitrage free price at time $n \leq N$. (i.e. allowing you to trade this security in the market with price V_n at time n keeps the market arbitrage free).

Remark 7.7. We do not, however, know that the security can be replicated.

By FTAP (part 1): Existence of a RNM
$$\Rightarrow$$
 No orb.
Will find a RNM for the extended month.
Claim P is a RNM on the extended modul!
Pf: \bigcirc Almedy know $D_n S_n^i$ is a \widetilde{P} mg $\forall i \in \{0, -d\}$.
 \textcircled{O} NTS $D_n V_n$ is a $\widetilde{P} - mg$
Note $V_n = \frac{1}{D_n} \widetilde{E}_n (D_n V_N)$

(

Lemma 7.8. Suppose the market has no arbitrage, and \underline{X} is the wealth process of a self-financing portfolio. If for any n, $\underline{X_n = 0}$ and $\underline{X_{n+1}} \ge 0$, then we must have $X_{n+1} = 0$ almost surely.

Lemma 7.9. Suppose we find an equivalent measure $\tilde{\underline{P}}$ such that whenever $\Delta_n \cdot S_n = 0$, we have $\tilde{E}_n(\underline{\Delta}_n \cdot S_{n+1}) = 0$, then $\underline{\tilde{P}}$ is a risk neutral measure.

$$\begin{pmatrix} Rowler & A_{n} = \begin{pmatrix} A_{n} & A_{n} & A_{n} \end{pmatrix} \\ A_{n} \cdot S_{n} = \begin{pmatrix} d & A_{n} & A_{n} \end{pmatrix} \\ \vdots = 0 & A_{n} \cdot S_{n} \end{pmatrix}$$

Dets check
$$P_n S'_n$$
 is a P mg.

NTS $\widetilde{E}_{n}\left(D_{n+1}S_{n+1}^{\prime}\right) = D_{n}S_{n}$

i.e. $\Delta_{\mu} = 1$ (1 chine of S) $\Delta_{\mathcal{M}}^{\mathcal{O}} = -S_{\mathcal{M}}^{'} \cdot \left(\frac{1}{\varsigma^{\mathcal{O}}}\right)$ $\Delta_{m} = 0 \quad \forall i \quad \forall = > 1.$ $\Delta_{n} \cdot S_{n} = \Delta_{n}^{0} S_{n}^{0} + \Delta_{n}^{1} S_{n}^{1} + D$ $= -\frac{S_{n}^{1}}{S_{n}^{0}} S_{n}^{0} + \frac{1}{S_{n}^{1}} S_{n}^{1} + 0 = 0$

By assemption: $\widetilde{E}_{\mathcal{N}} \left(\Delta_{\mathcal{N}} \circ S_{\mathcal{N}+1} \right) = \bigcirc_{=}$ $\operatorname{Compte} \Delta_{u} \cdot S_{u+1} = -\frac{S_{u}}{S^{\circ}} \cdot \frac{S_{u+1}}{S_{u+1}} + 1 \cdot S_{u+1}^{1} + 0$ $= \sum_{n=1}^{\infty} \left(A_{n} \cdot S_{n+1} \right) = \frac{-S_{n}}{S_{n}} \cdot S_{n+1}^{0} + E_{n} \cdot S_{n+1}^{1} = 0 + E_{n} \cdot S_{n+1}^{1} = 0 + E_{n} \cdot S_{n+1}^{1} = 0 + E_{n} \cdot S_{n+1}^{0} + E_{n} \cdot S_{n+1}^{0} = 0 + E_{n} \cdot S_{n+1}^{0} + E_{n} \cdot S_{n+1}^{0} = 0 + E_{n$

Lemma 7.10. Suppose \tilde{p} is a probability mass function such that $\tilde{p}(\omega) = \tilde{p}_1(\omega_1)\tilde{p}_2(\omega_1, \omega_2)\cdots \tilde{p}_N(\omega_1, \dots, \omega_N)$. If X_{n+1} is \mathcal{F}_{n+1} -measurable, then

$$\tilde{\boldsymbol{E}}_n X_{n+1}(\omega) = \sum_{i=1}^{M} \tilde{p}_{n+1}(\omega', j) X_{n+1}(\omega', j), \quad \text{where} \quad \omega' = (\omega_1, \dots, \omega_n), \omega = (\omega', \omega_{n+1}, \omega_{n+1}, \dots, \omega_N)$$

Lemma 7.11. Define $\underline{\bar{Q}} \stackrel{\text{def}}{=} \{v \in \mathbb{R}^M \mid v_i \ge 0 \ \forall i \in \{1, \dots, M\}\}$, and $\hat{Q} \stackrel{\text{def}}{=} \{v \in \mathbb{R}^M \mid v_i > 0 \ \forall i \in \{1, \dots, M\}\}$. Let $V \subseteq \underline{R}^M$ be a subspace. (1) $V \cap \bar{Q} = \{0\}$ if and only if there exists $\hat{n} \in \hat{Q}$ such that $|\hat{n}| = 1$ and $\hat{n} \perp V$. (2) The unit normal vector $\hat{n} \in \hat{Q}$ is unique if and only if $V \cap \bar{Q} = \{0\}$ and $\dim(V) = M - 1$.

Remark 7.1/2. This can be proved using the Hyperplane separation theorem used in convex analysis.

