

ĭ

- 7. Fundamental theorems of Asset Pricing
- 7.1. Markets with multiple risky assets.

(1) $\underline{\Omega} = \{1, \dots, \underline{M}\}^{[N]}$ is a probability space representing N rolls of M-sided dies, and p is a probability mass function on Ω . (2) The die rolls need not be i.i.d.

- (2) The die rolls need not be <u>1.1.d.</u> (3) Consider a financial market with d+1 assets $S_i^0, S_1^1, \ldots, S_n^d$. $(S_n^k$ denotes the price of the k-th asset at time n.) (4) For $i \in \{1, \ldots, d\}$ (S^i) is an adapted process (i.e. S_n^i is \mathcal{F}_n -measurable).
- (5) The 0-th asset S^0 is assumed to be a risk free bank/money market:
 - (a) $\overline{\text{Let } r_n}$ be an adapted process specifying the interest rate at time \underline{n} .

(a) Let r_n be an adapted process specifying the interest rate at time n. (b) Let $S_0^0 = 4$ and $S_{n+1}^0 = (1+r_n)S_n^0$. (Note S^0 is predictable.) (C) Let $D_n = (S_n^0)^{-1}$ be the discount factor $(D_n \text{ dollarstat time } 0 \text{ becomes } 1 \text{ dollar at time } n)$. (6) Let $\Delta_n = (\Delta_n^0, \dots, \Delta_n^d)$ be the position at time n of an investor in each of the assets (S_n^0, \dots, S_n^d) . (7) The wealth of an investor holding these assets is given by $X_n = \Delta_n \cdot S_n \stackrel{\text{def}}{=} \sum_{i=0}^d \Delta_n^i S_n^i$.

Definition 7.1. Consider a portfolio whose positions in the assets at time *n* is Δ_n . We say this portfolio is *self-financing* if Δ_n is adapted, and $\Delta_n \cdot S_{n+1} = \Delta_{n+1} \cdot S_{n+1}$.

the time
$$n \rightarrow pertion \Delta_n$$

Wealth $\Delta_n \circ S_n = \frac{d}{1-D} \Delta_n S_n$
Time $n+1 \rightarrow Stock prices choose from $S_n \rightarrow S_{n+1}$
New wealth \circ $\Delta_n \circ S_{n+1}$
 $\int_{\infty} \int_{\infty} \int_{\infty}$$

7.2. First fundamental theorem of asset pricing.

Definition 7.2. We say the market is arbitrage free if for any self financing portfolio with wealth process X, we have: $X_0 = 0$ and $X_N \ge 0$ implies $X_N = 0$ almost surely. **Definition 7.3.** We say \tilde{P} is a risk neutral measure if \tilde{P} is equivalent to P and $\tilde{E}_n(D_{n+1}S_{n+1}^i) = D_nS_n^i$ for every $i \in \{0, \ldots, d\}$. **Theorem 7.4.** The market defined in Section 7.1 is arbitrage free |i| and only if there exists a risk neutral measure. S Egnv P does not defend i.e. $\forall i \in \{1, \dots, d\}, \quad \widehat{E}_{\mathcal{M}}(\mathcal{D}_{\mathcal{M}+1}\mathcal{S}_{\mathcal{M}+1}) = \mathcal{D}_{\mathcal{M}}\mathcal{S}_{\mathcal{M}}'$ $\sum_{A} = 0$ $(for i = 0 : By duf <math>D_n = \frac{1}{c^0} \iff D_n S_n = 1)$

Diff from Biron: Du is norden (Du 15 a predictable process).

Lemma 7.5. If \tilde{P} is a risk neutral measure, then the discounted wealth of any self financing portfolio is a \tilde{P} -martingale. Proof that existence of a risk neutral measure implies no-arbitrage. of 7.5: Son P is a RNM $\Rightarrow \forall : \in \{0, ..., d\}, \qquad \widetilde{E}_{\mathcal{H}}\left(\mathcal{D}_{\mathcal{H}+1}\mathcal{S}_{\mathcal{H}+1}^{\mathsf{L}}\right) = \mathcal{D}_{\mathcal{H}}\mathcal{S}_{\mathcal{H}}^{\mathsf{L}}$ Xn = wealth of any sel pr pout \Rightarrow $\chi_{n} = \Delta_{n} \cdot S_{n}$ X adapted MY

NTS $\tilde{E}_{n}(D_{w|X_{nH}}) = D_{n}X_{n}$ $N_{ale}: \widetilde{E}_{u}\left(D_{u+1}X_{u+1}\right) = \widetilde{E}_{u}\left(D_{u+1}A_{u+1}S_{u+1}\right)$ $= \widetilde{E}_{M} \left(\mathcal{D}_{MH} \Delta_{M} \cdot \mathcal{S}_{MH} \right)$ $= \sum_{n=1}^{\infty} \Delta_{n}^{i} E_{n} \left(D_{n+1} S_{n+1}^{i} \right)$

(" X is set fin).

(en dy is from the mean

 $= \sum_{i=0}^{d} \Delta_{i} D_{i} S_{i}^{i} \qquad (: D_{i} a_{i} RNM)$

 $= \mathcal{D}_{\mathcal{M}} \Delta_{\mathcal{M}} \mathcal{S}_{\mathcal{M}} = \mathcal{D}_{\mathcal{M}} \chi_{\mathcal{M}}$ QED.

$$P_{\xi}: \widetilde{P} \longrightarrow RNM.$$

Start with $X_0 = D \ \mathcal{Q} \ X = wealth of a set fin fort.$

Suppose $X_{N} \ge 0$ NTS $X_{N} = 0$ $P_{f}: N_{ole} \qquad \stackrel{\sim}{E} \left(D_{N} \chi_{N} \right) = D_{0} \chi_{0} = O$ $\left(\begin{array}{c} \circ & \circ \\ & \circ \end{array} \right)_{n} X_{n} \text{ is a } P m \right)_{n}$ Knows $D_N X_N \ge 0$ Pais. $\begin{pmatrix} P & S \end{pmatrix} \implies D_N X_N = O \qquad P(A \cdot S)$ $\Rightarrow \mathcal{D}_{\mathcal{N}} X_{\mathcal{N}} = 0$