Lecture 29 (11/12). Please enabel video if you can

hat time: I Amica of infinitive Value G
for be reflicated! (i.e.
$$\exists a$$
 set fin part
wealth χ_n such that
 $\begin{cases} I \ \chi_n \ge G_n \\ \& (2) \ \chi_{T^*} = G_{T^*} \\ \downarrow^* \end{cases}$ for some stapping time T^*

Proposition 6.83. If \underline{X} is the wealth of a replicating portfolio with $\underline{X}_{\sigma^*} = \underline{G}_{\sigma^*}$. Then σ^* is an optimal exercise policy. Moreover, if $\underline{\tau^*}$ is any optimal exercise policy, then $X_{\tau^*} = \underline{G}_{\tau^*}$

Corollary 6.84 (Uniqueness). If X, and Y are wealth of two replicating portfolios for an American option with intrinsic value \underline{G} , then for any optimal exercise time σ^* we must have $\mathbf{1}_{n \leq \sigma^*} X_n = \mathbf{1}_{n \leq \sigma^*} Y_n$.

Recall: ① An aftern with fogolf Gr at time I
have AFP
$$\widehat{E}(D_{0}G_{1})$$
 at time O
② Let $V_{0}^{T} = \widehat{E}(D_{1}G_{2}) = AFP d_{1}$ the fixed wat after that fugs
 G_{1} at time τ .
③ Oftimel exercise follows: $\tau^{*} + V_{0}^{T} = mex V_{0}^{T}$

<u>Claim :</u> $X_{T'} = G_{T'} \implies T'$ is an appind exercise palicy $\frac{P_{\downarrow}}{NTS}$ $V_{0}^{T*} \ge V_{0}^{T}$ \forall T (fine standing times) ie NTS $ED_{T*}G_{T*} \geq E(D_{T}G_{T})$ $P_{\varphi}: \widehat{E}\left(\mathcal{D}_{\varphi}, \mathcal{G}_{\varphi}^{*}\right) = \widehat{E}\left(\mathcal{D}_{\varphi}, \mathcal{X}_{\varphi}^{*}\right) \xrightarrow{\mathsf{OST}} \widehat{E}\left(\mathcal{D}_{\varphi}, \mathcal{X}_{\varphi}^{*}\right) \xrightarrow{\mathsf{OST}} \widehat{E}\left(\mathcal{D}_{\varphi}, \mathcal{X}_{\varphi}^{*}\right)$ $\geq \widetilde{E}(P_{T}G_{T}) = V_{t}$ ded

Connely: Soy t^* is an optimal exercise folicy Then NTS $X_{t^*} = G_{t^*}$. $P_{t}^{*} = E(D_{t} G_{t}) = V_{0}^{t} = \max_{t} V_{0}^{t} = V_{0}^{t} = E(D_{t} G_{t})$ $= E(D_{t} X_{t})$ $\Rightarrow \widetilde{E}(\mathcal{D}_{t^{*}}\mathcal{G}_{t^{*}}) = \widetilde{E}(\mathcal{D}_{t^{*}}\chi_{t^{*}}) \xrightarrow{OST} \widetilde{E}(\mathcal{D}_{t}\chi_{t^{*}}) \xrightarrow{OST} \widetilde{E}(\mathcal{D}_{t^{*}}\chi_{t^{*}})$

Proposition 6.85. Let $V_N = G_N$, and $V_n = \max\{G_n, D_n^{-1}\tilde{E}_n V_{n+1}\}$. Then V_n is the arbitrage free price of the American option. That is, the market remains arbitrage free if we are allowed to trade an American option at price V_n .

(1) Say we buy one Am aft at time n (Price Vin) Let $O = V_n - Y_n \qquad (V_n = Y_n)$ price of Ronowed Cinvest in cool/stole). Set option at time $T \gg n$ ($T \rightarrow$ it time). Wealth at time T = V_T - X_T

$$\Rightarrow \widetilde{E}_{\mathcal{H}} \left(D_{\mathcal{I}} V_{\mathcal{I}} - D_{\mathcal{I}} Y_{\mathcal{I}} \right) = \widetilde{E}_{\mathcal{H}} \left(D_{\mathcal{I}} V_{\mathcal{I}} \right) - D_{\mathcal{H}} Y_{\mathcal{H}}$$

$$\begin{pmatrix} \circ \circ Y - cell & fin \Rightarrow D_{\mathcal{H}} Y_{\mathcal{H}} & is a \widetilde{P} \operatorname{Aug} \\ (Nde & V_{\mathcal{H}} = \max \{G_{\mathcal{H}}, \frac{1}{D_{\mathcal{H}}} E_{\mathcal{H}} (D_{\mathcal{H}} + V_{\mathcal{H}} +) \} \}$$

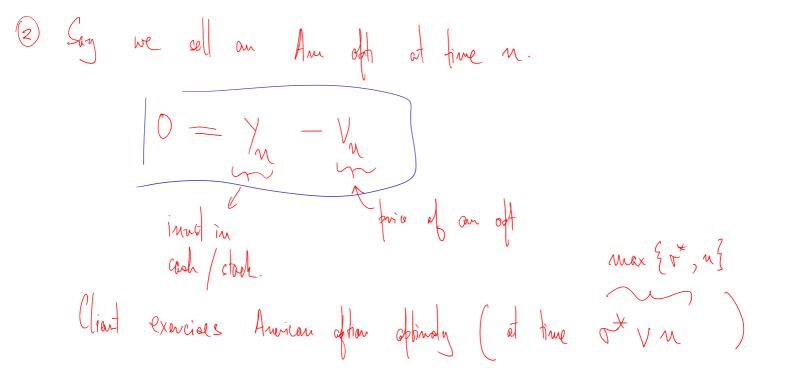
$$\Rightarrow D_{\mathcal{H}} V_{\mathcal{H}} \geq \widetilde{E}_{\mathcal{H}} \left(D_{\mathcal{H}} + V_{\mathcal{H}} +) \right)$$

$$(i.e. \quad D_{\mathcal{H}} V_{\mathcal{H}} \quad is \quad a \quad sufar \quad avg \quad addr \quad \widetilde{P} \end{pmatrix}$$

M

 $= \sum_{n} \left(P_{T} V_{T} - P_{T} Y_{T} \right) = E_{n} \left(D_{T} V_{T} \right) - D_{n} Y_{n}$

 $\leq D_{\mu} V_{\mu} - D_{\mu} Y_{\lambda}$ ("," $D_{\mu} V_{\mu}$ is a \tilde{P} super may > no ant is possible.



 $D_n V_n = D_n X_n - A_n$ (Pools decomposition) $k_{nors} \quad A_{r*} = 0$ $het \tau = \tau^* \vee \eta \quad k \quad nele \quad D_{\tau} \vee - D_n \vee_n = D_{\tau} \times_{\tau} - D_n \wedge_n$ $-(A_{\tau}-A_{n})$ $= \mathcal{D}_{\mathcal{X}} - \mathcal{D}_{\mathcal{Y}} \chi_{\mathcal{N}}$

 $\Rightarrow \tilde{F}_{M} \left(\tilde{P}_{L} V_{L} \right) = \tilde{F}_{M} \left(\tilde{P}_{n} V_{M} \right) = \tilde{P}_{N} V_{M}$

 $\Rightarrow \tilde{E}_{n} \left(D_{T}Y_{T} - D_{T}V_{T} \right) = D_{n}Y_{n} - D_{n}V_{n} = 0$ No anto il posente . QFD.