Lecture 26 (11/1). Please enable video if you can.
hast tue : Super $M g: M_{n} \geqslant E_{n} M_{n+1}$
Sub $M_{g}: \quad M_{n} \leqslant E_{u} M_{u+1}$
Doff Damp: $X={\underset{m g}{m}}_{m}^{m} \underset{M_{\text {Prediddell }}}{A} \quad\left(A_{M+1}\right.$ is f_{n}-meas $)$

Theorem 6.76 (Snell). Let G be an adapted process, and define V by

$$
\underline{V}_{N}=G_{N} \quad V_{n}=\max \left\{\boldsymbol{E}_{n} V_{n+1}, \underline{G_{n}}\right\} .
$$

Then $\underline{\underline{V}}$ is the smallest super-martingale for which $\underbrace{V_{n} \geqslant G_{n}}$.
Chase: Can stop playing a gave do any fore stating time σ Collat remind G_{g}

Pf: NTS (1) V is a super $M g$
(2) $V_{n} \geqslant G_{n}$
ℓ (3) If W is any simper $M g+W \geqslant G$ then $W \geqslant V$.
(2): $V_{n}=\max \left\{G_{n}, \quad E_{n} V_{n+1}\right\} \Rightarrow V_{n} \geqslant G_{n}$.
(1): $V_{n}=\max \left\{G_{n}, E_{n} V_{n+1}\right\} \Rightarrow V_{n} \geqslant E_{n} V_{n+1}$
$\Rightarrow V_{n}$ is a sumper mag.
Pf of (3): Lat W he any super M_{g}. $\rightarrow W \geqslant G$.
NTS $W \geqslant V$
Pf: Backinad induction: (1) Certaimly $W_{N} \geqslant G_{N}=V_{N}$
(2) Asmme $W_{n+1} \geqslant V_{n+1}$
(a) $W_{n} \geqslant E_{n} W_{n+1} \quad(\because W$ is a supter mg $)$
$\geqslant E_{x} V_{u+1} \quad$ (inention Hyp)
(6) Alwating $k_{\text {nas }} w_{n} \geqslant G_{n}$.

$$
\theta \&\left(\theta \Rightarrow W_{n} \geqslant \max \left\{G_{n}, E_{n} V_{u+1}\right\}=V_{n} \quad \operatorname{QED} .\right.
$$

Proposition 6.77. If W is any martingale for which $W_{n} \geqslant G_{n}$, and for one stopping time τ^{*} we have ${\boldsymbol{E} W_{\tau^{*}}=\boldsymbol{E} G_{\tau^{*}} \text {, then we must }}$ have $W_{\tau^{*} \wedge n}=V_{\tau^{*} \wedge n}$, and $V_{\tau^{*} \wedge n}$ is a martingale.

$$
\text { Pf: Wore (1): } W_{\tau^{*}}=G_{\tau^{*}} \quad\left(\begin{array}{ll}
\because & E W_{\tau^{*}}=E G_{\tau^{*}} \\
& \& W_{\tau^{*}} \geqslant G_{\tau^{*}}
\end{array}\right)
$$

Note (2): $W \geqslant V \geqslant G \quad(: W$ a $m g \Rightarrow W$ is a supt mg.

$$
\& W \geqslant G \geqslant V
$$

$K_{\text {mas: }}: W_{\tau^{*}}=G_{\tau^{*}} \Rightarrow W_{\tau^{*}}=V_{\tau^{*}}=G_{\tau^{*}}$

$$
\begin{aligned}
& \Rightarrow W_{\tau^{*}} \\
&=V_{\tau^{*}} \\
& \Rightarrow \quad W_{\tau^{*} \wedge n} \\
& \Rightarrow \quad \text { OST } F_{u} W_{\tau^{*}}
\end{aligned}=E_{u} V_{\tau^{*}} \stackrel{(0.0, \text { tosT } \rightarrow \text { hast }}{\leqslant} \stackrel{V_{\tau^{*} \wedge u}}{ }
$$

Sime we alredty kuns $W \geqslant V \Rightarrow W_{\tau^{*} \wedge!}=V_{\tau^{*} \wedge u}$.

Also $V_{\tau^{*} \wedge \Lambda}$ is a ing became $W_{\tau^{*} \wedge \Lambda}$ is a $m g$

$$
\begin{array}{r}
\left(\text { ORT } \Rightarrow E_{n}\left(W_{\tau_{\wedge} \wedge(n+1)}\right)=W_{\tau^{*} \wedge(n+1) \wedge n}\right. \\
\left.=W_{\tau^{*} \wedge n}\right) \\
\text { OED. }
\end{array}
$$

Theorem 6.78. Let $\sigma^{*}=\min \left\{n \mid \underline{V_{n}}=\underline{G_{n}}\right\}$. Then σ^{*} is the minimal solution to the optimal stopping problem, for \underline{G}. Namely, $\boldsymbol{E} G_{\sigma^{*}}=\max _{\sigma} \boldsymbol{E} G_{\sigma}$ where the maximum is taken over all finite stopping times σ. Moreover, if $\boldsymbol{E} G_{\tau^{*}}=\max _{\sigma} \boldsymbol{E} G_{\sigma}$ for any other finite stopping time τ^{*}, we must have $\underline{\underline{\tau}}^{*} \geqslant \sigma^{*}$,
Remark 6.79. By construction $V_{\sigma^{*} \wedge n}$ is a martingale.
of Thu: Knows V is a super $M g$.

$$
\begin{aligned}
& A_{0}=0 . \\
& \text { Claim: } A_{\sigma^{*}}=0 \quad(\text { Note }^{\circ} \Rightarrow A_{\sigma^{*} \wedge n}=0 \Rightarrow V_{\sigma^{*} \wedge u}=X_{\sigma^{*} \wedge n}^{\underbrace{\prime}} \\
& (\text { Nolo } \Rightarrow A_{\sigma^{*} \wedge n}=0 \Rightarrow V_{\sigma^{*} \wedge n}=\underbrace{M g}_{\sigma^{*} \wedge n})
\end{aligned}
$$

Pf of claim:

$$
\begin{aligned}
V_{n} & =\max \left\{G_{n}, \underline{E n}_{n+1}\right\} \\
r^{*} & =\min \left\{n \mid V_{n}=G_{n}\right\}
\end{aligned}
$$

\Rightarrow for $n<\sigma^{*}, V_{n} \neq G_{n}$ i.e. $V_{n}=E_{n} V_{u+1}$
Move fwasily $\mathbb{U}_{\left\{n<\sigma^{*}\right\}} V_{n}=\mathbb{U}_{\left\{n<\sigma^{*}\right\}} E_{n} V_{n+1}$

$$
\begin{aligned}
& \Rightarrow 1_{\left\{n<r^{*}\right\}} E_{n} V_{n+1}=\mathbb{1}_{\left\{n<r^{*}\right\}_{n}} E_{n} X_{n+1}-1_{\left\{n<r^{+}\right\}} E_{n} A_{n+1}
\end{aligned}
$$

$$
\begin{aligned}
& (V=x-A) \Rightarrow \mathbb{1}_{\left\{n<\sigma^{*}\right\}} A_{n+1}=\mathbb{1}_{\left\{n<\nabla^{*}\right\}^{*}} A_{n}
\end{aligned}
$$

$$
\begin{aligned}
& A_{0}=0 \quad \Rightarrow \quad A_{\sigma^{*}}=0 \\
&\left(\& \mathbb{1}_{\left\{n \leq \sigma^{*}\right\}} A_{n}=0\right) . \\
& \text { OED (Claim). }
\end{aligned}
$$

2020 Midum 2 Q 6

$$
\begin{array}{ll}
f(0)=0 & S_{\tau} \in\{0, M\} \\
f(M)=1 & E f_{\tau}\left(S_{\tau}\right)=P\left(S_{\tau}=0\right) \cdot \underbrace{f(0)}_{0}+P\left(S_{\tau}=M\right)
\end{array}
$$

