Lecture 26 (11/1). Please enable video if you can.

Let the : Super Mg :
$$M_n \ge E_n M_{n+1}$$

Sult Mg : $M_n \le E_n M_{n+1}$
Dool Deamp : $X = M + A$ (A_{n+1} is $\delta_n - meas$)
Mg Producted
 $A_0 = 0$ ($\Rightarrow E_n X_t \le X_{n+1}$)
Gov : X is a super Mg $\Rightarrow X = M - A$ ($\Rightarrow E_n X_t \le X_{n+1}$)
Mg Producted $A_0 = 0$ ($\Rightarrow E_n X_t \le X_{n+1}$)

Pl of
$$\mathfrak{B}$$
: Let W be any super Mg. $\mathcal{H} \otimes \mathfrak{G}$.
NTS $W \geq V$
Pl: Backwood induction: (1) Certainly $W_N \geq \mathfrak{G}_N = V_N$

(2) Assume $W_{n+1} \ge V_{n+1}$ (a) $W_{n} \ge E_{n} W_{n+1}$ (: W is a super mag) $\geq E_{\gamma} V_{n+1}$ (induition $H_{\gamma} \phi$) (b) Almedy Know Wy > Gn $\mathbb{Q}^{\mathbb{Q}} \xrightarrow{\mathbb{Q}} \mathbb{W}_{\mathbb{Q}} \xrightarrow{\mathbb{Q}} \mathbb{W}_{\mathbb{Q}} \xrightarrow{\mathbb{Q}} \mathbb{Q}_{\mathbb{Q}} \xrightarrow{\mathbb{Q}} \xrightarrow{\mathbb{Q}} \mathbb{Q}_{\mathbb{Q}} \xrightarrow{\mathbb{Q}} \xrightarrow{\mathbb{Q}}$

Proposition 6.77. If W is any martingale for which $W_n \ge G_n$, and for one stopping time τ^* we have $EW_{\tau^*} = EG_{\tau^*}$, then we must have $W_{\tau^* \land n} = V_{\tau^* \land n}$, and $V_{\tau^* \land n}$ is a martingale.

$$P_{\tau}^{\circ}: N_{\tau} = G_{\tau} \qquad (\circ S = W_{\tau} = EG_{\tau} \\ \& W_{\tau} \ge G_{\tau} \end{pmatrix}$$

 $\mathsf{K}_{\mathsf{MON}}: \mathsf{W}_{\mathsf{T}^{\mathsf{X}}} = \mathsf{G}_{\mathsf{T}^{\mathsf{X}}} \Longrightarrow \mathsf{W}_{\mathsf{T}^{\mathsf{X}}} = \mathsf{V}_{\mathsf{T}^{\mathsf{X}}} = \mathsf{G}_{\mathsf{T}^{\mathsf{X}}}.$ $W_{T^{*}} = V_{T^{*}}$ $W_{T^{*}} = E_{n} V_{T^{*}} \qquad (D.D.+OST - hast time).$ $W_{T^{*}AM} \stackrel{OST}{=} E_{n} W_{T^{*}} = E_{n} V_{T^{*}} \qquad \forall V_{T^{*}AM}$ -)Since we already know $W \ge V \Longrightarrow W = V_{t^* \land M} = V_{t^* \land M}$.

Also V is a my because W is a my $(OST \rightarrow E_{M}(W_{T^{*}\Lambda(M+1)}) = W_{T^{*}\Lambda\cdot(M+1)\Lambda M} = W_{T^{*}M}M)$

ØEP.

Theorem 6.78. Let $\sigma^* = \min\{n \mid V_n = \underline{G}_n\}$. Then σ^* is the minimal solution to the optimal stopping problem, for \underline{G} . Namely, $EG_{\sigma^*} = \max_{\sigma} EG_{\sigma}$ where the maximum is taken over all finite stopping times σ . Moreover, if $EG_{\tau^*} = \max_{\sigma} EG_{\sigma}$ for any other finite stopping time τ^* , we must have $\underline{\tau}^* \ge \sigma^*$.

Remark 6.79. By construction $V_{\sigma^* \wedge n}$ is a martingale.

of The " Know V is a super Mg Doob decomposition: V = X - A \overline{m} Pried, inc Ma $A_0 = 0$ $Note \Rightarrow A_{\tau^* \Lambda n} = 0 \Rightarrow V = X_{\sigma^* \Lambda n}$ Claim: Ar = U

 $V_{n} = max \left\{ G_{n}, E_{n} V_{n+1} \right\}$ Pf of claim: $\Gamma^{\star} = \min \left\{ \eta \mid V_{\eta} = G_{\eta} \right\}$

 $\Rightarrow for m < r^{+}$, $V_{m} \neq G_{m}$ i.e. $V_{m} = E_{m} V_{m+1}$

More puriely $\frac{1}{2} \propto 5^{*}$? $V_{M} = \frac{1}{2} \propto 5^{*}$? $E_{M} V_{M+1}$

 $\mathcal{K}_{\text{vers}} \stackrel{\mathcal{E}}{=} \left(\begin{array}{c} 1 \\ \mathcal{I}_{\text{vers}} \\$

 $\Rightarrow \underbrace{1}_{\{u < v^*\}} \underbrace{E_v V}_{u + 1} = \underbrace{1}_{\{u < v^*\}} \underbrace{E_v X}_{u + 1} - \underbrace{1}_{\{u < v^*\}} \underbrace{E_u A}_{u + 1}$

 $= \sum_{\{m < T^*\}} \sum_{n} = \sum_{\{m < T^*\}} \sum_{n} - \sum_{\{m < T^*\}} A_{n+1}$

 $(V - X - A) \implies \underbrace{1}_{\{\mathcal{H} < \mathcal{V}^{*}\}} A_{\mathcal{H}_{1}} = \underbrace{1}_{\{\mathcal{H} < \mathcal{V}^{*}\}} A_{\mathcal{H}_{1}}$

 $A_0 = 0$ $\Rightarrow A_{p^*} = 0$ $\begin{pmatrix} \& 1 \\ & A \\ & X \leq r^{*} \end{pmatrix}$ = () OED (Claim) Q3(b) Midom 2 2020 St E {0, M } (0) = 0 $P(S_{T}=0) \cdot \frac{1}{2}(0) + P(S_{T}=M) \frac{1}{2}(M)$ $E_{L}(S_{T}) =$ k(M) = 1 $= P(S_{r}=M)$ 0