Lecture 25 (10/29). Please enable video if you can

Les Have not yet prové
$$V_{\mu} = \max \{G_{\mu}, \frac{1}{2}E_{\mu}(D_{\mu}n V_{\mu}n)\}$$

lives the AFP of an american option (IOU)

6.6. Optimal Stopping.

Definition 6.68. We say an adapted process \underline{M} is a super-martingale if $\underline{E}_n M_{n+1} \leq M_n \left(\begin{array}{c} M_n \\ M_{n+1} \\ M_n \end{array} \right)$ **Definition 6.69.** We say an adapted process \overline{M} is a sub-martingale if $\underline{E}_n M_{n+1} \geq M_n$.

Mg: the fin
$$n \mapsto EM_n$$
 is constant
Super mg: The fin $n \mapsto EM_n$ is a decreasing for of n
Sub-mg: 1: 1: $n \mapsto EM_n$ is an ine for $d = n$.
(Pf: If Misa super mg: $E_n M_{n+1} \leq M_n \Rightarrow E(E_n M_{n+1}) \leq EM_n$

Theorem 6.71 (Doob decomposition) Any adapted process can be uniquely expressed as the sum of a martingale and a predictable process that starts at 0. That is, if X is an adapted process there exists a unique pair of process M, A such that M is a martingale, A is predictable, $A_0 = 0$ and $X = M + \overline{A}$.

My Predictable,
$$& A_0 = 0$$

Secold: A is a freedictable process if A_n is F_{n-1} - measurable
(In prove : Cash in bould \rightarrow predictable process.)
Scrotch work: Say $X_n = M_n + A_n$
My Pred, $A_0 = 0$

 $\Rightarrow X_{n+1} = M_{n+1} + A_{n+1}$

 $\Rightarrow E_n \chi_{n+1} = E_n M_{n+1} + E_n A_{n+1}$

 $E_{M} \chi_{n+1} = M_{m} + A_{M+1}$

Want $A_0 = 0$. $X_0 = M_0 + A_0 = Q_0$ = 0 $X_0 = M_0$

$$\begin{array}{c} X_{1} = M_{1} + A_{1} \\ E X_{1} = M_{0} + A_{1} \implies A_{1} = E X_{1} - M_{0} \\ (K_{nons} & M_{0}, A = 0 & A_{1} \end{array}) \\ Sine & X_{1} = M_{1} + A_{1} \implies M_{1} = A_{1} - X_{1} \\ K_{nons} & X_{2} = M_{2} + A_{2} \implies E_{1}X_{2} = M_{1} + A_{2} \\ \implies A_{2} = E_{1}X_{2} - M_{1} \\ \implies A_{2} = E_{1}X_{2} - M_{1} \\ \implies M_{2} = X_{2} - (E_{1}X_{2}) \neq M_{1} \end{array}$$

Proposition 6.72. If X is a super-martingale, then there exists a unique martingale M and increasing predictable process A such that X = M - A. Proposition 6.73. If X is a sub-martingale, then there exists a unique martingale M and increasing predictable process A such that $X = \underbrace{M}_{\succeq} + \underbrace{A}_{=}$ Say X is a super Mg (i.e. $E_{M}X_{MH} \leq X_{M}$) Doob decomposition: Wrie X = M + A (M is (is a mg i is predictate St $A = -\tilde{A}$, $\Rightarrow \chi = M - \tilde{A}$ NTS: A is inc.; $X_{n+1} = M_{n+1}$ AMF In

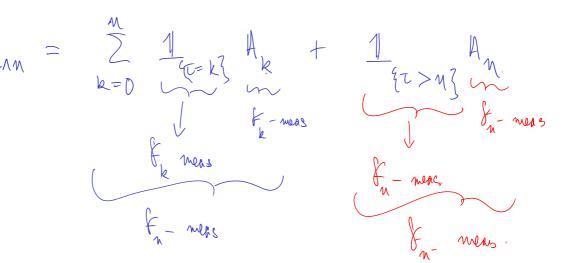
Condition on f_n : $E_n X_{n+1} = E_n M_{n+1} - E_n A_{n+1}$ $\begin{pmatrix} E_{M} X_{M+1} \leq X_{M} \end{pmatrix} \qquad \begin{array}{c} X_{M} \geq E_{M} X_{N+1} = M_{M} - A_{N+1} \\ Y_{N} \sim & \\ J_{N} \end{array}$ $X_{\mu} = M_{\mu} - A_{\mu}$ \implies $M_n - A_n \geq M_n - A_{n+1} \implies A_{n+1} \geq A_n$ =) A is increasing QED.

Corollary 6.74. If X is a super-martingale and $\underline{\tau}$ is a bounded stopping time, then $E_n X_{\tau} \leq X_{\tau \wedge n}$. **Corollary 6.75.** If X is a sub-martingale and τ is a bounded stopping time, then $E_n X_{\tau} \geq X_{\tau \wedge n}$.

Recall: OST:
$$F_{f}$$
 X is a wy E_{T} is a bidd staffing time
 H_{un} $E_{n} X_{T} = X_{LNM}$
 $\Rightarrow P_{f} e_{f} 6.74$: Say X is a super Mg
 $Doob due p : Warle X = M - A$
 M_{g} P_{red} Ima .
 $\Rightarrow E_{n} X_{T} = E_{n} (M_{T} - A_{T})$

(Arb= armin {a, b?)

 $= M_{tAm} - E_{u}A_{\overline{t}}$ = $M_{TAM} - A_{TAM} -$ $\begin{pmatrix} \circ & A \\ \bullet & T_{AY} \end{pmatrix}$ is $\begin{pmatrix} * \\ T_{AY} \end{pmatrix}$ $= \chi_{\text{TAM}}$ QED



Theorem 6.76 (Snell). Let \underline{G} be an adapted process, and define V by $\underbrace{V_N = G_N}_{V_n = M} \underbrace{V_n = \max\{\underline{E_n V_{n+1}}, \underline{G_n}\}}_{Interval in \underline{V}_n = M}$. Then \underline{V} is the smallest super-martingale for which $V_n \ge G_n$.