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Question 6.57. Does Strategy I replicate an American option? Say a* is the optimal exercise time, and we create a replicating portfolio
(with wealth process X ) for the option with payoff Go+ at time o*. Suppose an investor cashes out the American option at time T. Can

we pay him? Ww\e\ﬂ
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Question 6.58. Does Strategy II yield the same price as Strategy I? Le. must Xo = max{Vy | o is a finite stopping time }?
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Question 6.59. Is the wealth of the replicating portfolio (for an

Blbe

American option) uniquely determined?
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Question 6.60. How do you find the minimal optimal exercise time, and the arbitrage free price? Let’s take a simple example first.
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Theorem 6.61. Consider the binomial model with 0 < d < 1+ r < u, and an American option with intrinsic value G. Define
—_— T S

1 =
Vn =Gy, Vi= max{—En(DnHVnH),Gn} . ot=min{n <N|V,=G,}.
—— &~ =D, —_— _ = ==
Then V,, is the arbitrage free price, and c* is the minimal optimal exercise time. Moreover, this option can be replicated.
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Remark 6.62. The above is true in any complete, arbitrage free market.

Remark 6.63. In the Binomial model the above simplifies to:

1
Ty @Vnﬂ(w',i) +\QV51(&)/, :1)) ) Gn(w)} , where w = (W, wp11,w"), W' = (wi,...,wn).
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Va(w) = max{
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