Lecture 22 (10/22). Please enable video if you can

Consider a market with a few risky assets and a bank.

Proposition 6.49. Suppose a market admits a <u>risk neutral measure</u>. If X is the wealth of a self-financing portfolio and τ is a bounded stopping time such that $X_0 = 0$, and $X_\tau \ge 0$, then $X_\tau = 0$. That is, there can be an arbitrage opportunity at any bounded stopping time. (Under a RNM, X celf for (DuXn is a P mg) NTS $X_T = 0$ a.s. Know $D_n X_n$ is a $\mathcal{P}_m mq$. (self fin). \Rightarrow OST $\widetilde{E}(D_{t}X_{t}) = \widetilde{E}_{0}(D_{t}X_{t}) = D_{0}X_{0} = 0$ Know $P_{z}X_{z} \ge 0$ & $E(P_{z}X_{z}) = 0$ \rightarrow $R_{T} = 0$ as $\Rightarrow \chi_{T} = 0$

() We have is the in !
(2) What is
$$E \times_{T}$$
? ($X_n = health at time n$).
 $E \times_{T} = 0^{6}$ (Does not controlict DST : τ med not
(3) Have we bester the House?

6.5. American Options. An American option is an option that can be exercised at any time chosen by the holder.

Definition 6.51. Let G_0, G_1, \ldots, G_N be an adapted process. An American option with intrinsic value G is a security that pays G_{σ} at any finite stopping time σ chosen by the holder.

Example 6.52. An American put with strike K is an American option with intrinsic value $(K - S_n)^+$.

Question 6.53. How do we price an American option? How do we decide when to exercise it? What does it mean to replicate it?

Strategy I: Let σ be a finite stopping time, and consider an option with (random) maturity time σ and payoff G_{σ} . Let V_0^{σ} denote the arbitrage free price of this option. The arbitrage free price of the American option should be $V_0 = \max_{\sigma} V_0^{\sigma}$, where the maximum is taken over all finite stopping times σ .

Definition 6.54. The *optimal exercise time* is a stopping time σ^* that maximizes $V_0^{\sigma^*}$ over all finite stopping times.

Definition 6.55. An optimal exercise time $\underline{\sigma}^*$ is called *minimal* if for every optimal exercise time τ^* , we have $\sigma^* \leq \tau^*$. *Remark* 6.56. The optimal exercise time need not be unique. (The *minimal* optimal exercise time is certainly unique.)

$$V_0^{T} \rightarrow AFP = A_0^{T} \alpha$$
 aption that notice at $\underline{T} \geq pays G_{\underline{T}}$.
Know American option is worth more than any of these options.
hness: AFP of Amirican of $\underline{T} = V_0 = Max V_0^{T} | U_0 = V_0^{T}$.
 $(V_0 = V_0^{T}).$

Question 6.57. Does this replicate an American option? Say σ^* is the optimal exercise time, and we create a replicating portfolio (with wealth process X) for the option with payoff G_{σ^*} at time σ^* . Suppose an investor cashes out the American option at time τ . Can we pay him?

Strategy II: Replication. Suppose we have sold an American option with intrinsic value G to an investor. Using that, we hedge our position by investing in the market/bank, and let X_n be the our wealth at time n.

 $\begin{array}{c} \longrightarrow (1) \text{ Need } X_{\sigma} \geq G_{\sigma} \text{ for all finite stopping times } \sigma. \text{ (Or equivalently } X_n \geq G_n \text{ for all } n.) \\ (2) \text{ For (at-least) } one \text{ stopping time } \sigma^*, \text{ need } X_{\sigma^*} = G_{\sigma^*}. \end{array}$

The arbitrage free price of this option is X_0 .