Lecture 21 (10/20). Please enable video if you can

hast time: Up relate option: page for value
$$H$$

the first time stade frice exceeds U
Found the AFP as $\frac{1}{\xi_{N} \leq \tau_{\chi}} V_{N} = \frac{1}{\xi_{N} \leq \tau_{\chi}} \int_{\chi_{N}} \int_{\chi_{N}}$

Proposition 6.44. Let $Y = (Y^1, \ldots, Y^d)$ be a d-dimensional process such that for every n we have $Y_{n+1}(\omega) = h_{n+1}(Y_n(\omega), \omega_{n+1})$ for some deterministic function h_{n+1} . Let $\overline{A}_1, \ldots, A_N \subseteq \mathbb{R}^d$, with $A_N \subseteq \mathbb{R}^d$, and define the stopping time σ by $\sigma = \min\{n \in \{0, \dots, N\} \mid Y_n \in A_n\}.$ Let $g_0, \ldots g_N$ be N deterministic functions on \mathbb{R}^d , and consider a security that pays $G_{\sigma} = g_{\sigma}(Y_{\sigma})$. The arbitrage free price of this security is of the form $V_n \mathbf{1}_{\{\sigma \ge n\}} = f_n(Y_n) \mathbf{1}_{\{\sigma \ge n\}}$. The functions f_n satisfy the recurrence relation $f_N(y) = g_N(y)$ $f_n(y) = \mathbf{1}_{\{y \in A_n\}} g_n(y) + \frac{\mathbf{1}_{\{y \notin A_n\}}}{1+r} \left(\tilde{p} f_{n+1}(h_{n+1}(y,\underline{1})) + \tilde{q} f_{n+1}(h_{n+1}(y,\underline{-1})) \right)$ tor up repaire action. Y' (supersump) ~~ coondinge
Y' (sub-script) ~~ time.

6.4. Optional Sampling.

Theorem 6.45 (Doob's optional sampling theorem). Let $\underline{\tau}$ be a bounded stopping time and M be a martingale. Then $E_n M_{\tau} = M_{\tau \wedge n}$. Remark 6.46. When dealing with finitely many coin tosses $(N \leq \infty)$, bounded stopping times are the same as finite stopping times. When dealing with infinitely many coin tosses, the two notions are different. Remark 6.47. When $N = \infty$ and τ is not bounded, the optional sampling theorem is still true if $X_{\tau \wedge k}$ is uniformly bounded in k. Corollary 6.48. If M is a martingale and τ is a bounded stopping time, then $EM_{\tau} = EM_0$. > Note: Fix T = 11+1 (is a stooping time) $E_{n}M_{\Sigma} = E_{n}M_{n+1} = M_{n}(de_{1}d_{2}M_{q})$ $\|0ST$ $M = M_{\text{eff}} = M_{\text{TAM}}$ \mathcal{V}

Proof of Theorem 6.45 T is a bud stopping fine NTS EMM - M TAP $\begin{array}{c} \left(\begin{array}{c} E \\ n \end{array} \right) \\ \left(\begin{array}{c} E \\ n \end{array} \right) \\ k=0 \end{array} \begin{array}{c} 1 \\ \left\{ \tau - k \right\} \\ \left(\begin{array}{c} M \\ r \end{array} \right) \\ \left(\begin{array}{c} M \\ r$ MT Note ENMU $\overline{}$ F-weas 1 M gt=k{ T EM $= E_{n} \left(\begin{array}{c} M \\ 2 \\ k=D \end{array} \right) \begin{array}{c} 1 \\ \xi T = k \end{array} \right)$ mers.

- Ž 1 M k=0. {t=k? MAT + "

 $= \frac{1}{\{\tau \leq n\}} M_{\tau \wedge n} + E_n \begin{pmatrix} N \\ Z \\ k = n_1 \end{pmatrix} \begin{pmatrix} N \\ z \\ k = n_1 \end{pmatrix}$

 $= 11 + \sum_{k=m+1}^{N} E_{m} \left(\frac{1}{2\tau - k_{s}^{2}} + \frac{1}{2\tau - k_{$ ξ - weas $(k \ge n)$

 $+\sum_{k=111}^{N}E_{k}E_{k}\left(1-\frac{1}{\xi\tau-k_{x}^{2}}M_{k}\right)$ $+ \sum_{k=n+1}^{N} E_{n} \left(\frac{1}{\xi \tau = k^{2}} E_{k} M_{k} \right)$ $+ \sum_{k=nH}^{N} E_{n} \left(\frac{1}{4\tau - kz} E_{k} N \right) \left(\frac{1}{3\pi ny} \right)$ $k = nH \left(\frac{1}{4\tau - kz} E_{k} N \right) \left(\frac{1}{3\pi ny} \right)$

 $+ \sum_{k=n_{\mathrm{H}}}^{N} E_{n} \left(E_{k} \left(1 - K \right) \right)$ $H = \frac{N}{2} E_{n} \left(\frac{1}{2\tau k} M \right) \quad (tower find)$ k = n H $= \mathbb{I} + \mathbb{E}_{M} \left(\begin{array}{c} \mathbb{N} \\ \mathbb{Z} \\ \mathbb{K} = \mathbb{M} + \mathbb{K} \end{array} \right) \mathbb{M}_{N}$

 $= (1 + E_{N}) \left(\frac{1}{5T} + \frac{1}{5T} \right)$ En-mers. $\frac{1}{2\tau > n_{2}^{2}} = \frac{1}{2} \sum_{n=1}^{\infty} M_{n_{2}}$ $= " + \frac{1}{\tau} M =$ $= \frac{1}{\{t \leq n\}} \frac{M}{\tau_{AM}} + \frac{1}{\{t > n\}} \frac{M}{\tau_{AM}}$ = M TAN QED