Lecture 21 (10/20). Please enable video if you can
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Proposition 6.44. Let Y = (Y',...,Y?) be a d-dimensional process such that for every n we have Yyi1(w) = hny1(Ya(w), wn1)| for
some deterministic function hy,,1. Let ‘11 él\’ C LR; with ANCR?, and define the stopping time o — E—

J/g—min{ne{o  NY|Y, € A,}.
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and consider a security that pays G, = ¢,
9o
w)lioz=ny - The functwns fn satisfy the recurrence relation

Let go, ...gn be N deterministic functions on R
is of the form Viliozny = fn(Y,
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(Y,). The arbitrage free price of this securi

In() = ox () & T M
fn(y) = 1{yeAn}gn(y) {yiA ) (pfn-&-l n+1(ya :)) + qfn-‘rl( n+1( _1)))
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6.4. Optional Sampling.
Theorem 6.45 (Doob’s optional sampling theorem). Let 1 be a|bounded stopping time|and M be a martingale. Then E, = Mrn.-
——— - —

——

T
Remark 6.46. When dealing with finitely many coin tosses (]\j___<\o_o)7 bounded stopping times are the same as finite stopping times. When
dealing with infinitely many coin tosses, the two notions are different.
Remark 6.47. When N = oo and 7 is not bounded, the optional sampling theorem is still true if X, is uniformly bounded in k.
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orollary 6.48. If M is a martingale and T is a bounded stopping time, then EM, = EM,.
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