Lecture 20 (10/18). Please enable your video if you can.

- Let G be an adapted process, and σ be a *finite* stopping time.
- Note $\underline{G}_{\sigma} = \sum_{n=1}^{N} G_n \mathbf{1}_{\sigma=n}$.
- Let $(X_0, (\Delta_n))$ be a self-financing portfolio, and X_n at time n be the wealth of this portfolio at time n.

Definition 6.38. Consider a derivative security that pays G_{σ} at the random time σ . A self-financing portfolio with wealth process X is a replicating strategy if $X_{\sigma} = G_{\sigma}$.

Remark 6.39. If a replicating strategy exists, then at any time before σ , the wealth of the replicating strategy must equal the arbitrage free price V. That is, $\mathbf{1}_{\{n \leq \sigma\}} X_n = \mathbf{1}_{\{n \leq \sigma\}} V_n$.

Theorem 6.40. The security with payoff G_{σ} (at the stopping time σ) can be replicated. The arbitrage free price is given by

$$\underbrace{V_n \mathbf{1}_{\{\sigma \ge n\}}}_{\gamma} = \frac{1}{D_n} \tilde{\boldsymbol{E}}_n (D_\sigma G_\sigma \mathbf{1}_{\{\sigma \ge n\}})$$

Remark 6.41. The only thing required for the proof of Theorem 6.40 is the fact that X_n is the wealth of a self-financing portfolio if and only if $D_n X_n$ is a $\tilde{\boldsymbol{P}}$ martingale.

$$= \frac{1}{\{n \leq \sigma_{2}^{2}\}} = \frac{1}{\{n \leq \sigma_{1}^{2}\}} = \frac{1}{\{n \leq \sigma_{1}^{2}\}} = \frac{1}{D_{n}} \stackrel{2}{\in} \frac{1}{E_{n}} (p_{\sigma} 6_{\sigma}) = \frac{1}{E_{n}} (p_{\sigma$$

Proposition 6.42. The wealth of the replicating portfolio (at times before σ) is uniquely determined by the recurrence relations:

$$X_{N}\mathbf{1}_{\{\sigma=N\}} = G_{N}\mathbf{1}_{\{\sigma=N\}}$$

$$X_{n}\mathbf{1}_{\{\sigma\geq n\}} = G_{n}\mathbf{1}_{\{\sigma=n\}} + \frac{1}{1+r}\mathbf{1}_{\{\sigma>n\}}\tilde{E}_{n}X_{n+1}.$$

If we write $\omega = (\omega', \omega_{n+1}, \omega'')$ with $\omega' = (\omega_1, \dots, \omega_n)$, then we know in the Binomial model we have $\tilde{E}_n X_{n+1}(\omega) = \tilde{E}_n X_{n+1}(\omega') = \tilde{p} X_{n+1}(\omega', 1) + \tilde{q} X_{n+1}(\omega', -1)$.

Recall
$$X_n = wealth of very four = AFP = V_n$$

 $Pf: Ref four is self for $\Rightarrow D_n X_n$ is a P mg.
 $\Rightarrow D_n X_n = \tilde{E}_n (D_{nn} X_{nn}) \rightarrow X_n = \frac{1}{D_n} \tilde{E}_n (D_{nn} X_{nn})$
 $= \frac{1}{H_n} \tilde{E}_n X_{nn}$$

 $\Rightarrow \underbrace{1}_{\{\tau \ge n\}} X_n = \underbrace{1}_{\{\tau \ge n\}} \underbrace{1}_{H\tau} E_n X_{n\tau}$ F-meas $=\frac{1}{4\pi}\left(\frac{2}{5}\left(\frac{1}{5}\left(\frac{1}{5}\right) + \frac{1}{5}\left(\frac{1}{5}\right)\right)\right)$ $= \frac{1}{\{\tau = \eta\}} \underbrace{F_n \times_{n+1}}_{1+m} + \frac{1}{1+m} \underbrace{f_n \times_{n+1}}_{1+m} \underbrace{F_n \times_{n+1}}_{1+m}$ $u = \frac{1}{D_{u}} \frac{1}{\{\tau = u\}} \frac{1}{E_{u}} \left(\frac{D_{u}}{X_{u+1}} \right) + \frac{1}{1+r} \frac{1}{\{\tau > u\}} \frac{1}{E_{u}} \frac{1}{X_{u}} \frac{1}{E_{u}} \frac{1}{X_{u}}$

 $=\frac{1}{R_{m}}\prod_{\{\tau=m\}}(R_{m}\chi_{n}) +$

 $= \frac{1}{\{\sigma=M\}} G_{\tau} +$

I I En X HI OED.

As before, we will use state processes to find practical algorithms to price securities.

Example 6.43. Let A, U > 0. The up-and-rebate option pays the face value A at the first time the stock price exceeds U (up to maturity time N), and nothing otherwise. Find an efficient way to compute the arbitrage free price of this option.

Say
$$d = \frac{1}{n}$$
, $S_0 = 1$, $U = uS_0 = u$, $N = 3$.
Option 1: Draw true of all cointozers up to $N = 3$ & frice.

They some crample: But hook for $\frac{1}{2} N = \frac{1}{2} N = \frac{1}{2}$

 $\left(\mathcal{N} \leq \mathcal{N} - \mathbf{I} \right)$ (2) Say $\frac{1}{\{v \ge u_{1}\}} \bigvee_{u+1} = \frac{1}{\{v \ge u_{n}\}} \left\{ \left(\begin{array}{c} S_{u+1} \end{array} \right) \right\}$ $\left(\begin{array}{c} \mathsf{Kums} \\ \mathsf{N}(\mathsf{s}) = \mathsf{A} \\ \mathsf{I}_{\mathsf{s}} > \mathsf{U}_{\mathsf{s}} \end{array} \right)$ See if we can find a but $f_n \rightarrow \frac{1}{2} = \frac{1}{2} \int_{\mathcal{T}} \int_{\mathcal{T}} (S_n)$

 $+ \frac{1}{\xi S_n < \xi I + \frac{1}{\xi S_n < \xi I} + \frac{1}{\xi S_n < \xi I + \frac{1}{\xi S_n + 1}} /$ $\frac{1}{\{v \ge m\}}$ -{S, >U} (futte $\left(u \sum_{\underline{w}} \right)$ $\left(\begin{array}{ccc} A \underline{A} \\ \underline{f} \\ \underline{f$ + Entles T>M} $\left(\zeta_{n} \right)$, Lowe \$n $F + \{u_{H}(ds)\tilde{q}\}$ (hs) + 1 Sun $\zeta) =$

Proposition 6.44. Let $Y = (Y^1, \ldots, Y^d)$ be a d-dimensional process such that for every n we have $Y_{n+1}(\omega) = h_{n+1}(Y_n(\omega), \omega_{n+1})$ for some deterministic function h_{n+1} . Let $A_1, \ldots, A_N \subseteq \mathbb{R}^d$, with $A_N \mathbb{R}^d$, and define the stopping time σ by

 $\sigma = \min\{n \in \{0, \ldots, N\} \mid Y_n \in A_n\}.$

Let $g_0, \ldots g_N$ be N deterministic functions on \mathbb{R}^d , and consider a security that pays $G_{\sigma} = g_{\sigma}(Y_{\sigma})$. The arbitrage free price of this security is of the form $V_n \mathbf{1}_{\{\sigma \ge n\}} = f_n(Y_n) \mathbf{1}_{\{\sigma \ge n\}}$. The functions f_n satisfy the recurrence relation

 $\begin{aligned} f_N(y) &= g_N(y) \\ f_n(y) &= \mathbf{1}_{\{y \in A_n\}} g_n(y) + \frac{\mathbf{1}_{\{y \notin A_n\}}}{1+r} \Big(\tilde{p} f_{n+1}(h_{n+1}(y,1)) + \tilde{q} f_{n+1}(h_{n+1}(y,-1)) \Big) \end{aligned}$