Lecture 20 (10/18). Please enable your video if you can.
hat

- Let G be an adapted process, and σ be a finite stopping time.
- Note $G_{\sigma}=\sum_{n=}^{N} G_{n} \mathbf{1}_{\sigma=n}$.
- Let $\left(\overline{X_{0}},\left(\Delta_{n}\right)\right)$ be a self-financing portfolio, and X_{n} at time n be the wealth of this portfolio at time n.

Definition 6.38. Consider a derivative security that pays G_{σ} at the random time σ. A self-financing portfolio with wealth process X is a replicating strategy if $X_{\sigma}=G_{\sigma}$.
Remark 6.39. If a replicating strategy exists, then at any time before σ, the wealth of the replicating strategy must equal the arbitrage free price V. That is, $\mathbf{1}_{\{n \leqslant \sigma\}} X_{n}=\mathbf{1}_{\{n \leqslant \sigma\}} V_{n}$.
Theorem 6.40. The security with payoff G_{σ} (at the stopping time σ) can be replicated. The arbitrage free price is given by

$$
V_{n} \mathbf{1}_{\{\sigma \geqslant n\}}=\frac{1}{D_{n}} \tilde{\boldsymbol{E}}_{n}\left(D_{\sigma} G_{\sigma} \mathbf{1}_{\{\sigma \geqslant n\}}\right)
$$

Remark 6.41. The only thing required for the proof of Theorem 6.40 is the fact that X_{n} is the wealth of a self-financing portfolio if and only if $D_{n} X_{n}$ is a $\tilde{\boldsymbol{P}}$ martingale.

$$
\rightarrow 1_{\{x \leqslant v\}^{\prime}} V_{u}=\prod_{\{u \leqslant \sigma\}} \quad \frac{1}{D_{n}} \tilde{E}_{n}\left(D_{\sigma} G_{\sigma}\right)
$$

Proposition 6.42. The wealth of the replicating portfolio (at times before σ) is uniquely determined by the recurrence relations:

$$
\left[\begin{array}{l}
\frac{X_{N} \mathbf{1}_{\{\sigma=N\}}}{X_{n} \mathbf{1}_{\{\sigma \geqslant n\}}}=G_{N} \mathbf{1}_{\{\sigma=N\}} \\
\rightarrow \frac{G_{n}}{} \mathbf{1}_{\{\sigma=n\}}+\frac{1}{1+r} \mathbf{1}_{\{\sigma>n\}} \tilde{\boldsymbol{E}}_{n} X_{n+1}
\end{array}\right]
$$

If we write $\omega=\left(\omega^{\prime}, \omega_{n+1}, \omega^{\prime \prime}\right)$ with $\omega^{\prime}=\left(\omega_{1}, \ldots, \omega_{n}\right)$, then we know in the Binomial model we have

$$
\tilde{\boldsymbol{E}}_{n} X_{n+1}(\omega)=\tilde{\boldsymbol{E}}_{n} X_{n+1}\left(\omega^{\prime}\right)=\tilde{p} X_{n+1}\left(\omega^{\prime}, 1\right)+\tilde{q} X_{n+1}\left(\omega^{\prime},-1\right) .
$$

(heed) $X_{n}=$ with

ne p fort $=$

$$
\left.A F P=V_{n}\right)
$$

18
a
$\tilde{p} m g$

$$
\begin{aligned}
\Rightarrow D_{n} X_{n}=E_{n}\left(D_{n+1} X_{n+1}\right) \rightarrow X_{n} & =\frac{1}{D_{n}} F_{n}\left(D_{n+1} X_{n+1}\right) \\
& =\frac{1}{1+\tau_{n}} E_{n} X_{n+1}
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \mathbb{1}_{\{\sigma>n\}} X_{n} & =\underbrace{\frac{1}{\{\sigma \partial n\}}}_{\tilde{F}_{n}=\text { mans }} \frac{1}{1+r} \tilde{E}_{n} X_{n+1} \\
& =\frac{1}{A \pi}\left(\tilde{E}_{n}\left(\frac{1_{q \sigma=n\}}}{} X_{n+1}+\mathbb{1}_{\{\sigma>n\}} X_{n+1}\right)\right) \\
& =\mathbb{1}_{\{r=n\}} \tilde{E}_{n} X_{n+1}^{1+n}+\frac{1}{1+\pi} \mathbb{1}_{\{\sigma>n\}} \tilde{E}_{n} X_{n+1} \\
& =\frac{1}{D_{n}} \mathbb{1}_{\{\sigma=n\}} \tilde{E}_{n}\left(D_{n+1} X_{n+1}\right)+\frac{1}{1+r} \mathbb{1}_{\{\sigma>n\}} \tilde{E}_{n} X_{n+1}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{D_{n}} \mathbb{1}_{\{\sigma=n\}}\left(D_{m} X_{n}\right)+ \\
& =\mathbb{1}_{\{\sigma=n\}} X_{\sigma}+ \\
& =\mathbb{1}_{\{\sigma=n\}} G_{\sigma}+\frac{1}{1+r} \mathbb{1}_{\{\sigma>n\}} E_{n} X_{n+1}
\end{aligned}
$$

As before, we will use state processes to find practical algorithms to price securities.
Example 6.43. Let $A, \underline{U}>0$. The up-and-rebate option pays the face value \underline{A} at the first time the stock price exceeds U (up to maturity
Soy $d=\frac{1}{n}, \quad S_{0}=1, \quad U=u S_{0}=u, N=3$.
Option 1: Dias tue of all crimporees at to $N=5$ \& pace.

Toy same example: But hook for $\frac{\mathbb{1}}{\{n \leq \sigma\}_{n}} V_{\{n \leq \sigma\}} f_{n}\left(S_{n}\right)$
(1) $\frac{\left.\mathbb{H}_{\{\sigma=N}\right]_{N}}{}= \begin{cases}A & \text { if } S_{N} \geqslant U \\ 0 & \text { if nat }\end{cases}$

$$
\text { (Nile } V_{N}+\left\{\begin{array}{ll}
A & \text { if } S_{N} \geqslant U \\
0 & \text { ow }
\end{array}, \underline{\underline{\{N a t}} \begin{array}{l}
\mathbb{1}_{\{N N}
\end{array} V_{N}=\left\{\begin{array}{ll}
A & \text { if } s_{N} \geq u \\
0 & \text { on }
\end{array}\right)\right.
$$

(2)

$$
\begin{aligned}
& \operatorname{San} \mathbb{1}_{\{0 \geqslant 0 \times n\}} V_{u+1}=\frac{1}{\{n \geqslant n+n\}} f_{n+1}\left(S_{n+1}\right) \quad(n \leq N-1) \\
& \quad\left(k_{\text {unar }} f_{N}(s)=A \mathbb{1}_{\{s \geqslant U\}}\right)
\end{aligned}
$$

Sa if we can finct a fo $f_{n} \rightarrow \mathbb{1}_{\{\sigma \geqslant n\}_{n}}=\mathbb{1}_{\{\sigma \geqslant n\}} \delta_{n}\left(S_{n}\right)$

$$
\begin{aligned}
& =\frac{1}{\{r \geqslant n\}}\left(\frac{1 \mathbb{1}_{\left\{S_{n} \geqslant u\right\}}}{}+\frac{1}{\left\{S_{n}<u\right\}} \frac{1+\tilde{f} \frac{\tilde{f}}{n}\left(S_{n+1}\left(S_{n+1}\right)\right.}{)}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =1_{\{\sigma \geqslant n\}} \cdot f_{n}\left(S_{n}\right) \text {, cilune }
\end{aligned}
$$

Proposition 6.44. Let $Y=\left(Y^{1}, \ldots, Y^{d}\right)$ be a d-dimensional process such that for every n we have $Y_{n+1}(\omega)=h_{n+1}\left(Y_{n}(\omega)\right.$, $\left.\omega_{n+1}\right)$ for some deterministic function h_{n+1}. Let $A_{1}, \ldots, A_{N} \subseteq \mathbb{R}^{d}$, with $A_{N} \mathbb{R}^{d}$, and define the stopping time σ by

$$
\sigma=\min \left\{n \in\{0, \ldots, N\} \mid Y_{n} \in A_{n}\right\}
$$

Let $g_{0}, \ldots g_{N}$ be N deterministic functions on \mathbb{R}^{d}, and consider a security that pays $G_{\sigma}=g_{\sigma}\left(Y_{\sigma}\right)$. The arbitrage free price of this security is of the form $V_{n} \mathbf{1}_{\{\sigma \geqslant n\}}=f_{n}\left(Y_{n}\right) \mathbf{1}_{\{\sigma \geqslant n\}}$. The functions f_{n} satisfy the recurrence relation

$$
\begin{aligned}
f_{N}(y) & =g_{N}(y) \\
f_{n}(y) & =\mathbf{1}_{\left\{y \in A_{n}\right\}} g_{n}(y)+\frac{\mathbf{1}_{\left\{y \notin A_{n}\right\}}}{1+r}\left(\tilde{p} f_{n+1}\left(h_{n+1}(y, 1)\right)+\tilde{q} f_{n+1}\left(h_{n+1}(y,-1)\right)\right)
\end{aligned}
$$

