Lecture 19 (10/15). Please enable your video if you can.

$$\begin{array}{l} \mathcal{R}(\mathbb{L}_{C}) &= (\mathbb{A}\mathbb{L}) \subset (\mathbb{B}\mathbb{W}^{1} \ \text{not} \ \text{on} \ \mathbb{R} \ \text{computer}^{1}) \\ (\mathbb{S} \ \text{error} \ \approx \ 10^{-17} \\ (\mathbb{S} \ \mathbb{W}^{1}) & \xrightarrow{\text{on}} \ \mathbb{C}\mathbb{W}^{1} \\ \end{array} \\ \begin{array}{l} \mathcal{R} \ \mathbb{W}^{1} \\ \end{array} \\ \begin{array}{l} \mathcal{R} \ \mathbb{W}^{1} \\ \mathcal{R} \ \mathbb{W}^{1} \ \mathbb{W$$

had fime i to Stopping true: floy a game. Stop at true T. (mandam) Need 27 = MZ E Fr (only dep on 14 n coin to 025) stop at time n D_{q} : τ is a stapping time if $D \tau : SL \rightarrow \{0, 1, \dots, N\} \cup \{0\}$ & (2) Need {T=n} E & H M. (Nite: $\Im (\Longrightarrow)(2)$: Ned $\{\tau \leq n\} \in \mathcal{F}_n \quad \forall n$).

- Let \underline{G} be an adapted process, and $\underline{\sigma}$ be a *finite* stopping time.
- Note $G_{\sigma} = \sum_{n=0}^{N} G_n \mathbf{1}_{\sigma=n}$.
- Let $(X_0, (\Delta_n))$ be a self-financing portfolio, and X_n at time n be the wealth of this portfolio at time n.

Definition 6.38. Consider a derivative security that pays $\underline{G_{\sigma}}$ at the random time $\underline{\sigma}$. A self-financing portfolio with wealth process X is a replicating strategy if $X_{\sigma} = G_{\sigma}$.

Remark 6.39. If a replicating strategy exists, then at any time before σ , the wealth of the replicating strategy must equal the arbitrage free price V. That is, $\mathbf{1}_{\{n \leq \sigma\}} X_n = \mathbf{1}_{\{n \leq \sigma\}} V_n$.

Theorem 6.40. The security with payoff G_{σ} (at the stopping time σ) can be replicated. The arbitrage free price is given by

$$\underbrace{V_n \mathbf{1}_{\{\sigma \ge n\}}}_{\downarrow \smile \frown} = \frac{1}{D_n} \tilde{E}_n(D_\sigma G_\sigma \mathbf{1}_{\{\sigma \ge n\}})$$

Remark 6.41. The only thing required for the proof of Theorem 6.40 is the fact that X_n is the wealth of a self-financing portfolio if and only if $D_n X_n$ is a \tilde{P} martingale.

Note
$$\{\tau \ge n\} \in \{\pi\}$$
 $\Rightarrow 1$ is $\{\pi\} - new$
 $\Rightarrow E_n(1 + D_0 G_{\tau}) = 1 + E_n(D_0 G_{\tau})$
 $V(1 + E_n(1 + D_0 G_{\tau})) = 1 + E_n(D_0 G_{\tau})$

Note $\{\tau = n\} \in \{\pi\}$. ("• τ is a staffing time) $\{\tau \leq n\} \in \{\pi\}$. (Yes: $\{\tau \leq n\} = \bigcup \{\tau = k\} \in \{\pi\}$ k=0 \Im $\{r > w\} = \{r \leq w\}$ EFM Alto Er>nzefm

 $P_{f} \neq T_{hm} = \frac{1}{D_{n}} \stackrel{\sim}{\in} L_{f} \left(D_{r} G_{r} \right)$ Dave we know X = wealth and not point,Then $V_n = X_n = X_n = T_{2n \le \tau_n^2} = T_{2n \le$ $= \frac{1}{D_{u}} \mathcal{E}_{u} \left(\mathcal{D}_{\sigma} \mathcal{G}_{\sigma} \mathcal{A}_{\xi u \leq \tau \xi} \right)$

QED ((laim 1).

$$\begin{aligned} \overline{\chi} & u_{\chi}^{\dagger} & claim (2)^{\circ} \text{ NTS } X_{\chi} = G_{\chi}. \\ \overline{E}_{magh} & to show & \forall n, \qquad 1_{\overline{\chi}T=n_{\chi}^{\circ}} X_{\chi} = 1_{\overline{\chi}T=n_{\chi}^{\circ}} G_{\chi}. \\ \text{Life frome Hiss: } & \text{LHS} = 1_{\overline{\chi}T=n_{\chi}^{\circ}} \sum_{\tau} = 1_{\overline{\chi}T=n_{\chi}^{\circ}} \sum_{\tau} \\ = 1_{\overline{\chi}T=n_{\chi}^{\circ}} \sum_{\tau} E_{n} (P_{\chi} - G_{\chi}). \end{aligned}$$

F-meae

 $= \frac{1}{D_n} \mathcal{E}_n \left(\frac{1}{2\pi - n_n^2} \mathcal{D}_n \mathcal{G}_n \right) = \frac{1}{D_n} \mathcal{E}_n \left(\frac{1}{2\pi - n_n^2} \mathcal{D}_n \mathcal{G}_n \right)$ meas $= \frac{1}{R_{m}} \frac{1}{\xi_{T}} = \frac{1}{N_{m}} \frac{1}{\xi_{T}} = \frac{1}{\xi_{T}} \frac{1}{\xi_{T}$

Proposition 6.42. The wealth of the replicating portfolio (at times before σ) is uniquely determined by the recurrence relations:

$$X_{N}\mathbf{1}_{\{\sigma=N\}} = G_{N}\mathbf{1}_{\{\sigma=N\}}$$

$$X_{n}\mathbf{1}_{\{\sigma\geq n\}} = G_{n}\mathbf{1}_{\{\sigma=n\}} + \frac{1}{1+r}\mathbf{1}_{\{\sigma>n\}}\tilde{E}_{n}X_{n+1}.$$

If we write $\omega = (\omega', \omega_{n+1}, \omega'')$ with $\omega' = (\omega_1, \dots, \omega_n)$, then we know in the Binomial model we have $\tilde{E}_n X_{n+1}(\omega) = \tilde{E}_n X_{n+1}(\omega') = \tilde{p} X_{n+1}(\omega', 1) + \tilde{q} X_{n+1}(\omega', -1)$. As before, we will use state processes to find practical algorithms to price securities.

Example 6.43. Let A, U > 0. The up-and-rebate option pays the face value A at the first time the stock price exceeds U (up to maturity time N), and nothing otherwise. Find an efficient way to compute the arbitrage free price of this option.

Proposition 6.44. Let $Y = (Y^1, \ldots, Y^d)$ be a d-dimensional process such that for every n we have $Y_{n+1}(\omega) = h_{n+1}(Y_n(\omega), \omega_{n+1})$ for some deterministic function h_{n+1} . Let $A_1, \ldots, A_N \subseteq \mathbb{R}^d$, with $A_N \mathbb{R}^d$, and define the stopping time σ by

 $\sigma = \min\{n \in \{0, \dots, N\} \mid Y_n \in A_n\}.$

Let $g_0, \ldots g_N$ be N deterministic functions on \mathbb{R}^d , and consider a security that pays $G_{\sigma} = g_{\sigma}(Y_{\sigma})$. The arbitrage free price of this security is of the form $V_n \mathbf{1}_{\{\sigma \ge n\}} = f_n(Y_n) \mathbf{1}_{\{\sigma \ge n\}}$. The functions f_n satisfy the recurrence relation

 $\begin{aligned} f_N(y) &= g_N(y) \\ f_n(y) &= \mathbf{1}_{\{y \in A_n\}} g_n(y) + \frac{\mathbf{1}_{\{y \notin A_n\}}}{1+r} \Big(\tilde{p} f_{n+1}(h_{n+1}(y,1)) + \tilde{q} f_{n+1}(h_{n+1}(y,-1)) \Big) \end{aligned}$

6.4. **Optional Sampling.** Consider a market with a few risky assets and a bank.

Question 6.45. If there is no arbitrage opportunity at time N, can there be arbitrage opportunities at time $n \leq N$? How about at finite stopping times?

Proposition 6.46. There is no arbitrage opportunity at time N if and only if there is no arbitrage opportunity at any finite stopping time.

Question 6.47. Say M is a martingale. We know $EM_n = EM_0$ for all n. Is this also true for stopping times?

Theorem 6.48 (Doob's optional sampling theorem). Let τ be a bounded stopping time and M be a martingale. Then $E_n M_{\tau} = M_{\tau \wedge n}$.

Proposition 6.49. Suppose a market admits a risk neutral measure. If X is the wealth of a self-financing portfolio and τ is a finite stopping time such that $X_0 = 0$, and $X_{\tau} \ge 0$, then $X_{\tau} = 0$.

Remark 6.50. This is simply an alternate proof of Proposition 6.46.

Question 6.51 (Gamblers run). Suppose $N = \infty$. Let X_n be *i.i.d.* random variables with mean 0, and let $S_n = \sum_{1}^{n} X_k$. Let $\tau = \min\{n \mid S_n = 1\}$. (It is known that $\tau < \infty$ almost surely.) What is $\mathbf{E}S_{\tau}$? What is $\lim_{N \to \infty} \mathbf{E}S_{\tau \wedge N}$?

6.5. American Options. An American option is an option that can be exercised at any time chosen by the holder.

Definition 6.52. Let G_0, G_1, \ldots, G_N be an adapted process. An American option with intrinsic value G is a security that pays G_{σ} at any finite stopping time σ chosen by the holder.

Example 6.53. An American put with strike K is an American option with intrinsic value $(K - S_n)^+$.

Question 6.54. How do we price an American option? How do we decide when to exercise it? What does it mean to replicate it?