Lecture 18 (10/13). Please enable your video if you can

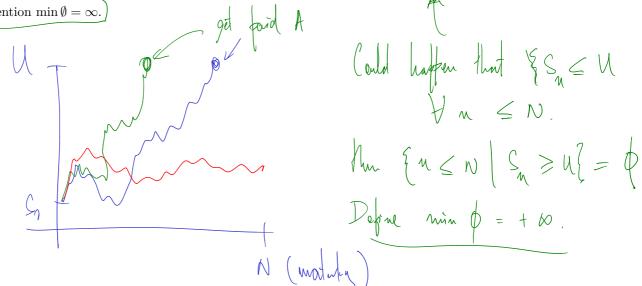
Notation:
$$a \wedge b = \min \{a, b\}$$

 $a \vee b = \max \{a, b\}$

6.3. Options with random maturity. Consider the N period binomial model with 0 < d < 1 + r < u

Example 6.29 (Up-and-rebate option). Let $\underline{A}, \underline{U} > 0$. The up-and-rebate option pays the face value A at the first time the stock price exceeds U (up to maturity time N), and nothing otherwise. Explicitly, let $\underline{\tau} = \min\{n \leqslant N \mid S_n \geqslant U\}$, and let $\underline{\sigma} = \underline{\tau} \wedge N$. The up-and-rebate options pays $A\mathbf{1}_{\tau \leqslant N}$ at the random time σ .

Remark 6.30. By convention $\min \emptyset = \infty$.



Definition 6.31. We say a random variable $\underline{\tau}$ is a *stopping time* if:

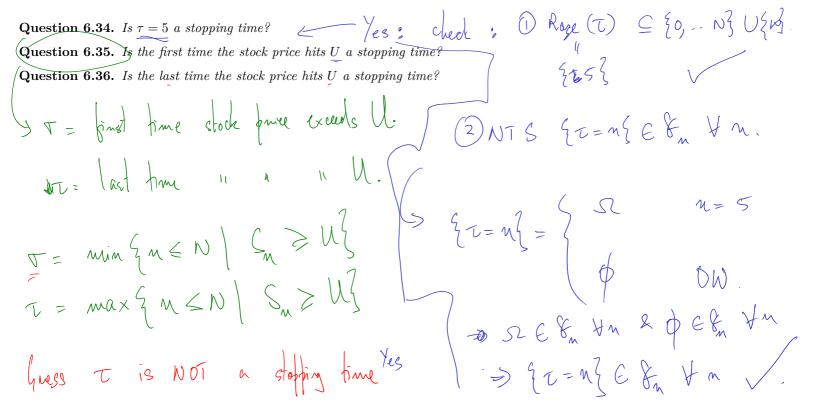
 $(1) \quad \tau : \Omega \to \{0, \dots, N\} \cup \{\infty\}$ $(2) \text{ For all } n \leqslant N, \text{ the event } \{\tau \leqslant n\} \in \mathcal{F}_n.$

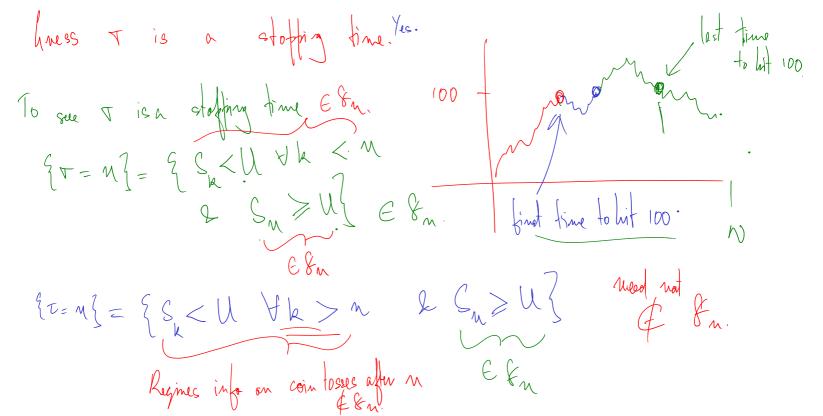
Remark 6.32. We say τ is a finite stopping time if $\tau < \infty$ almost surely.

Remark 6.33. The second condition above is equivalent to requiring $\{\underline{\tau} = n\} \in \mathcal{F}_n$ for all n.

T -> au timo be deside to stap playing a give { t = n } -> event be decided to stap playing at time n.

Regime { t = n } E & (any uses first n coin to sees).





Question 6.37. If σ and τ are stopping times, is $\sigma \wedge \tau$ a stopping time? How about $\sigma \vee \tau$?

Where τ is τ .

min { T, T}

- Let G be an adapted process, and σ be a finite stopping time.
 Consider a derivative security that pays G_σ at the random time σ.
- Note $G_{\sigma} = \sum_{n=0}^{N} G_{n} \mathbf{1}_{\sigma=n}$ ($G_{\sigma} = G_{n}$) be a self-financing portfolio, and $G_{\sigma} = G_{n}$).
 Let $(X_{0}, (\Delta_{n}))$ be a self-financing portfolio, and $G_{\sigma} = G_{n}$).
- **Definition 6.38.** A self-financing portfolio with wealth process X is a replicating strategy if $X_{\sigma} = G_{\sigma}$.

Theorem 6.39. The security with payoff G_{σ} (at the stopping time σ) can be replicated. The arbitrage free price is given by $X_n \mathbf{1}_{\{\sigma \geqslant n\}} = \frac{\mathbb{E}_n(D_{\sigma} G_{\sigma} \mathbf{1}_{\{\sigma \geqslant n\}})}{D_n}$

$$X_{n}\mathbf{1}_{\{\sigma\geqslant n\}} = \frac{V_{1}}{D_{n}}\tilde{E}_{n}(\underline{D}_{\sigma}\underline{G}_{\sigma}\mathbf{1}_{\{\sigma\geqslant n\}})$$

Remark 6.40. The only thing required for the proof of Theorem 6.39 is the fact that X_n is the wealth of a self-financing portfolio if and only if $D_n X_n$ is a \boldsymbol{P} martingale.

Proof: Let
$$Z = D_F G_F$$
 (some R.V.)

Let $X_N = \frac{1}{D_N} E_N(Z) = \frac{1}{D_N} E_N(D_F G_F)$

Claim D Xn is the wealth of a set finaing soutfalio. > X is a replication of folio of the (Note: Claim () + (2) secuty with foyof 6, at time T. => AFP of searly at time M & T is Xm. Note $1 \times 1 = 1 \times 1 =$

Note
$$\{\tau = n\} \in \xi_n$$

Since τ is a sloper time
$$= \frac{1}{2} \sum_{n=1}^{\infty} \sum_{n=$$

Figh to show
$$D_n X_n = \text{ realth of self for fact}$$

Figh to show $D_n X_n \cdot \text{ is a } P$ my

But $D_n X_n = \widetilde{E}_n Z = \widetilde{E}_n \left(D_r G_r \right)$
 $\widetilde{E}_n \left(D_{n+1} X_{n+1} \right) = \widetilde{E}_n \left(\widetilde{E}_{n+1} \left(D_r G_r \right) \right) = \widetilde{E}_n \left(D_r G_r \right) = D_n X_n$

DED,