Lecture 17 (10/11). Please enable video if you can

 $U = \frac{1}{D} \widetilde{E}_{n}(D_{N}V_{N}) \simeq toles O(2^{N}) tome to comple.$ $k = q(\varepsilon)$ Vn = (CSn) _____ tohers D(N) the to comple I I V is not in this form (Eq. Knockand offines), find fort algorithms

Definition 6.20. We say a *d*-dimensional process $Y = (Y^1, \ldots, Y^d)$ process is a *state process* if for any security with maturity $m \leq N$, and payoff of the form $V_m = f_m(Y_m)$ for some (non-random) function f_m , the arbitrage free price must also be of the form $V_n = f_n(Y_n)$ for some (non-random) function f_n .

Remark 6.21. For state processes given f_N , we typically find f_n by backward induction. The number of computations at time n is of order $\operatorname{Range}(Y_n)$.

Conntin : superscript -> coordinate sub eccmpt -> time.

Remark 6.22. The fact that S_n is Markov (under \tilde{P}) implies that it is a state process. State process, if $I_{\mathcal{A}}$ by $\mathcal{A}_{\mathcal{A}}$ is a fine for $\mathcal{A}_{\mathcal{A}}$ by $\mathcal{A}_{\mathcal{A}}$ by $\mathcal{A}_{\mathcal{A}}$ is a fine for $\mathcal{A}_{\mathcal{A}}$ by $\mathcal{A}_{$ state them AFP is also a fu of the state

Theorem 6.23. Let
$$Y = (Y^1, ..., Y^d)$$
 be a d-dimensional process. Suppose we can find functions $g_1, ..., g_N$ such that $Y_{n+1}(\omega) = g_{n+1}(Y_n(\omega), \omega_{n+1})$. Then Y is a state process.
 $PP \downarrow \psi$ thum: An ever that for g_N of the N .
 $NTS \forall n \leq N$, AFP of thus n is some for $g_N \bigvee N$.
 $NTS \forall n \leq N$, AFP of thus n is some for $g_N \bigvee N$.
 $P \downarrow N$.
 $P \downarrow V$ thus $n \leq N$, AFP of thus n is some for $g_N \bigvee N$.
 $P \downarrow N$.
 $NTS \forall n \leq N$, AFP of thus n is for $n = N-1$.
 $NTS AFP of thus n is $f_{n+1}(Y_{n+1})$. Thus for $n = N-1$.
 $NTS AFP of thus n is $f_{n}(Y_n)$ for some for f_N that T .
 $V \downarrow N$.$$

Know AFP at time $n = V_n = \frac{1}{1+r} \stackrel{\text{En}}{=} V_{n+1}$

 $FF al time n = v_{n}$ $\Rightarrow V_{n} = \frac{1}{1+r} \stackrel{F}{=} n \left\{ \int_{M+1} \left(\frac{Y_{n+1}}{M} \right) = \frac{1}{1+r} \stackrel{F}{=} n \left\{ \int_{M+1} \left(\int_{M+1} \left($ indep terms $\frac{1}{1+n}\left(\frac{\gamma}{p}\left(\frac{\gamma}{h_{H}}\left(\frac{\gamma}{h},+1\right)\right) + \frac{\gamma}{p}\left(\frac{\gamma}{h_{H}}\left(\frac{\gamma}{h},-1\right)\right)\right)$

In Some \Rightarrow $V_n = V_n (Y_n)$ where Note: Gives a vecture de to find to in toung of that f to the tought of tought of the tought of the tought of the tought of the tought of tought of tought of the tought of OFD

Question 6.24. Is
$$Y_n = S_n$$
 a state process?
Question 6.25. Is $Y_n = \max_{k \leq n} S_{\#} \mu$ state process?
Question 6.26. Is $Y_n = (S_n, \max_{k \leq n} S_n)$ a state process?
 $M_n = \max_{k \leq n} S_k$.
 $M_n = \max_{k \leq n} S_k$.
 $M_n = (S_n, \max_{k \leq n} S_n)$ a state process?
 $M_n = (S_n, \max_{k \leq n} S_n)$ a state process?
 $M_n = (S_n, \max_{k \leq n} S_n)$ a state process?
 $M_n = (S_n, \max_{k \leq n} S_k)$ a state process?
 $M_n = (S_n, \max_{k \leq n} S_k)$ a state process?
 $M_n = (S_n, \max_{k \leq n} S_k)$ a state process?
 $M_n = (S_n, \max_{k \leq n} S_k)$ a state process?
 $M_n = (S_n, \max_{k \leq n} S_k)$ a state process?
 $M_n = (S_n, \max_{k \leq n} S_k)$ a state process?
 $M_n = (S_n, \max_{k \leq n} S_k)$ a state process?
 $M_n = (S_n, \max_{k \leq n} S_k)$ a state process?
 $M_n = (S_n, \max_{k \leq n} S_k)$ a state process?
 $M_n = (S_n, \max_{k \leq n} S_k)$ a state process?
 $M_n = (S_n, \max_{k \leq n} S_k)$ a state process?
 $M_n = (S_n, \max_{k \leq n} S_k)$ a state process?
 $M_n = (S_n, \max_{k \leq n} S_k)$ a state process?
 $M_n = (S_n, \max_{k \leq n} S_k)$ a state process?
 $M_n = (S_n, \max_{k \leq n} S_k)$ a state process?
 $M_n = (S_n, \max_{k \leq n} S_k)$ a state process?
 $M_n = (S_n, \max_{k \leq n} S_k)$ a state process?
 $M_n = (S_n, \max_{k \leq n} S_k)$ a state process?
 $M_n = (S_n, \max_{k \leq n} S_k)$ a state process?
 $M_n = (S_n, \max_{k \leq n} S_k)$ a state process?
 $M_n = (S_n, \max_{k \leq n} S_k)$ a state process?
 $M_n = (S_n, \max_{k \leq n} S_k)$ a state process?
 $M_n = (S_n, \max_{k \leq n} S_k)$ a state process?
 $M_n = (S_n, \max_{k \leq n} S_k)$ a state process?
 $M_n = (S_n, \max_{k \leq n} S_k)$ a state process?
 $M_n = (S_n, \max_{k \leq n} S_k)$ a state process?
 $M_n = (S_n, \max_{k \leq n} S_k)$ a state process?
 $M_n = (S_n, \max_{k \leq n} S_k)$ a state process?
 $M_n = (S_n, \max_{k \leq n} S_k)$ a state process?
 $M_n = (S_n, \max_{k \leq n} S_k)$ a state process?
 $M_n = (S_n, \max_{k \leq n} S_k)$ a state process?
 $M_n = (S_n, \max_{k \leq n} S_k)$ a state process?
 $M_n = (S_n, \max_{k \leq n} S_k)$ a state process?
 $M_n = (S_n, \max_{k \leq n} S_k)$ a state process?
 $M_n = (S_n, \max_{k \leq n} S_k)$ a state process?
 $M_n = (S_n, \max_{k \leq n} S_k)$ a state p

When $Y'_{n+1} = S_{n+1} = S_n \left(u \mathcal{I}_{\omega_{n+1}} + d \mathcal{I}_{\omega_{n+1}} - 1 \right)$ $= \chi \left(u \underbrace{1}_{W_{uu}} + d \underbrace{1}_{W_{uu}} - 1 \right)$ some for al 1/4 & Watt. (Recall 1 -> voR V $1_{A} = \begin{cases} 1 & \omega \in A \\ 0 & \omega \notin A \end{cases}$

Question 6.27. Let $A_n = \sum_{i=1}^{n} S_k$. Is A_n a state process? \swarrow $\mathbb{N} \cap$ Question 6.28. Is $Y_n = (S_n, A_n)$ a state process? Yes (velocen to HW) 50=1 Roye (A) = { 1+4; 1+d { Rame (S) = { h, d} $R_{ep}(S_2) = \{u^2, ud, d^2\}$ Roye $(A_2) = \frac{1}{2} [+n+n]$, (+n+n]1+d+ud, 1+d+d22 Rge (Az) = & vels

6.3. Options with random maturity. Consider the N period binomial model with 0 < d < 1 + r < u.

Example 6.29 (Up-and-rebate option). Let $\underline{A}, \underline{U} > 0$. The up-and-rebate option pays the face value \underline{A} at the first time the stock price exceeds \underline{U} (up to maturity time N), and nothing otherwise. Explicitly, let $\tau = \min\{n \leq N \mid S_n \geq U\}$, and let $\sigma = \tau \wedge N$. The up-and-rebate options pays $A\mathbf{1}_{\tau \leq N}$ at the random time σ .

Remark 6.30. By convention $\min \emptyset = \infty$.

Definition 6.31. We say a random variable τ is a stopping time if:

- (1) $\tau: \Omega \to \{0, \ldots, N\} \cup \infty$
- (2) For all $n \leq N$, the event $\{\tau \leq n\} \in \mathcal{F}_n$.

Remark 6.32. We say τ is a finite stopping time if $\tau < \infty$ almost surely.

Remark 6.33. The second condition above is equivalent to requiring $\{\tau = n\} \in \mathcal{F}_n$ for all n.