Lecture 16 (10/8). Please enable your video if you can.

hat the : DAFP fonde:
$$V_{n} = \int_{D_{n}} \tilde{E}_{n} (D_{N}V_{N}) = takes O(2^{N}) time to
Complete
(2) Flow $V_{N} = g(S_{N}) \rightarrow then can complete in time $O(N^{2})$
 $C_{laime}! = V_{n} = J_{n}(S_{n}) & J_{n} = \frac{1}{H^{2}} \left(J_{n}(ux) + J_{n+1}(dx) + J_{n+1}(dx) + J_{n}(dx) + J_$$$$

Example 6.19 (Knockout options). An up and out call option with strike K and barrier U and maturity N gives the holder the option (not obligation) to buy the stock at price K at maturity time N, provided the stock price has never exceeded the barrier price U. If the stock price exceeds the barrier U before maturity, the option is worthless. Find an efficient algorithm to price this option.

 $Payell af after : Let <math>M = \max_{N \in N} S_{N}$ $M_{\rm Al} \leq M_{\rm Al}$ VN = Pag off of the up & out offion $\left(S_{N}-K\right)^{T}$ $\overset{\mathbb{M}}{\overset{}_{\mathcal{N}}}>\mathcal{U}$ $V_{N} = \frac{1}{\{M_{N} \leq u_{1}^{2}\}} \begin{pmatrix} \mathsf{s}_{N} - \mathsf{k} \end{pmatrix}$ (Notation: if A G SL, define 1 to be the render variable which

takes value 1 on the event A & D outside A. WEA i.e $1(\omega) = \begin{cases} 1 & \omega \in A \\ 0 & \omega \notin A \end{cases}$ $= \frac{1}{\left\{M_{N} \leq U_{2}^{2}\right\}} \left(S_{N} - \kappa\right)^{\dagger} = \left(S_{N} - \kappa\right)$ on $\{M, \leq n\}$ on {M, E U}

Idea: Let $M_n = \max_{k \in \mathbb{N}} S_k$ $(M_n \text{ is an adapted proose})$ Hoke $V_n = f_n(M_n, S_n)$ & find a neares net for fn.

3 Backwood indution: Suppose for time NHI. we know $V_{nH} = \begin{cases} M_{n+1} & M_{n+1} \\ M_{n+1} & M_{n+1} \end{cases}$ Want $V_n = \int_M (M_n, S_n)$ for some for f_m . Knows $V_{m} = \frac{1}{D_{m}} \sum_{n=1}^{\infty} \left(D_{n+1} V_{n+1} \right) = \frac{1}{1+r} \sum_{n=1}^{\infty} V_{n+1}$ $= \frac{1}{1+r} \widetilde{E}_{h} \left\{ M_{n+1}, S_{n+1} \right)'$

 $\stackrel{\text{Want}}{=} \{(M_n, S_n)\}$ To find the write Mut & Sut in tens of Mn & Sn. $S_{u+1} = \begin{cases} uS_n & \omega_{u+1} = 1 \\ dS_n & \omega_{u+1} = -1 \end{cases}$ $=) S_{n+1} = X_{n+1} S_{n}, \quad \text{when } X_{n+1} = \begin{cases} n & \omega_{n+1} = 1 \\ d & \omega_{n+1} = -1 \end{cases}$ $M_{n+1} = \begin{cases} max \{M_n, uS_n\} & i \\ & w_{u+1} = +1 \end{cases}$

 $=\frac{1}{1+r} \mathcal{E}_{n} \left\{ \mathcal{M}_{n} v (\mathfrak{u} S_{n}) \mathcal{I}_{n+1} + \mathcal{M}_{n} \mathcal{I}_{n+1} = -i \right\} \mathcal{X}_{n+1} \mathcal{S}_{n}$ indep lema $= \frac{1}{4\pi} \left(\frac{\gamma}{p} \int_{W_{1}} \left(M_{N} v (uS_{N}) \cdot 1 + O, uS_{N} \right) \right)$ $+ \Im \{M_{n} \vee (NS_{n}) \cdot O + M_{n}, dS_{n}\}$

M

 $V_{m} = \frac{1}{1+r} \left(\mathcal{F} \left\{ M_{n} v (nS_{n}) *, nS_{n} \right\} + \mathcal{F} \left\{ J_{ut_{1}} (M_{n}, dS_{n}) \right\} \right)$ $\Rightarrow V_{n} = \int_{M} (M_{n}, S_{n}) \text{ where } \int_{M} (M, S) = \frac{1}{4r} \left(F \int_{M_{n}} (M V(NS), NS) + \frac{1}{2} \int_{M_{1}} (M, dS) \right)$ prox cegs livres me a reament relation to compute bu in terms of truti

Definition 6.20. We say a <u>d</u>-dimensional process $Y = (Y^1, \ldots, Y^d)$ process is a state process if for any security with maturity $m \leq N$, and payoff of the form $V_m = f_m(Y_m)$ for some (non-random) function f_m , the arbitrage free price must also be of the form $V_n = f_n(Y_n)$ for some (non-random) function f_n .

Remark 6.21. For state processes given f_N , we typically find f_n by backward induction. The number of computations at time n is of order Range (Y_n) .

Remark 6.22. The fact that S_n is Markov (under \tilde{P}) implies that it is a state process.

E.g.
$$Y_{n} = (S_{n})$$
 is a state process.
E.g. $M_{n} = \max S_{k}$ 2 set $Y'_{n} = M_{n}$ $Y = (Y', Y^{2})$
 $k \leq n$ $Y'_{n} = S_{n}$ $Y = (Y', Y^{2})$
 $Y'_{n} = S_{n}$ $Y = (Y', Y'^{2})$
 $Y'_{n} = S_{n}$ $Y = (Y', Y'^{2})$
 $Y'_{n} = S_{n}$ $Y = (Y', Y'^{2})$
 $Y'_{n} = S_{n}$ $Y = (Y', Y'^{2})$