## Lecture 15 (10/6). Please enable video if you can.

\_

## 6.2. State processes.

Question 6.14. Consider the N-period binomial model, and a security with payoff  $V_N$ . Let  $X_n$  be the arbitrage free price at time  $n \leq N$ , and  $\Delta_n$  be the number of shares in the replicating portfolio. What is an algorithm to find  $X_n$ ,  $\Delta_n$  for all  $n \leq N$ ? How much is the computational time?

X = AFP at time n = Wealth of Rep Pout at time n  $=\frac{1}{D_{n}}\mathcal{F}_{n}(D_{N}V_{N}) = \frac{1}{(1+r)^{n}}\mathcal{F}_{n}V_{N} \quad \left(\frac{1}{2}D_{n}^{2}-\frac{1}{(1+r)^{n}}\right)$ to Say majuty N = 3 months -> 90 days. Computational cost  $\approx O(\# \text{ elents in } \Omega) = O(2^N)$ 

$$= O(2^{90})$$

$${}^{2}(^{0} Au = 1024 \times 10^{3} \implies 2^{90} = (2^{10})^{9} \approx 10^{27}$$
Say can compte  $O(10^{9})$  obstituts in one second.  
Comptational time  $\infty$ .  $O(10^{18})$  seconds.  
Life of minute  $\infty$   $10^{19}$  seconds.

**Theorem 6.15.** Suppose a security pays  $V_N = g(S_N)$  at maturity N for some (non-random) function g. Then the arbitrage free price at time  $n \leq N$  is given by  $V_n = f_n(S_n)$ , where:  $(1) \quad \widehat{f_N}(x) = \underline{g(x)} \text{ for } x \in \overline{\text{Range}(S_N)}.$   $(2) \quad \widehat{f_n}(x) = \frac{1}{1+r} (\widetilde{p}f_{n+1}(ux) + \widetilde{q}f_{n+1}(dx)) \text{ for } x \in \text{Range}(S_n).$ Remark 6.16. Reduces the computational time from  $O(2^N)$  to  $O(\sum_{n=0}^{N} |\text{Range}(S_n)|) = O(N^2)$  for the Binomial model. Remark 6.17. Can solve this to get  $f_n(x) = \frac{1}{(1+r)^{N-n}} \sum_{k=0}^{N-n} \binom{N-n}{k} \tilde{p}^k \tilde{q}^{N-n-k} f_N(x u^k d^{N-n-k})$ Note: Range  $S_1 = \{u, S_0, dS_0\} \rightarrow \# Range(S_1) = 2.$ 2  $Raye(S_2) = \{n^2 S_0, nd S_0, d^2 S_0\} \Rightarrow \# Raye(S_2) = 3$  $R_{oyp}(S_n) = \{ u S_0, u d S_0, \dots, d^n S_0 \}, \#elem R_{oyp}(S_n) = M.$ 

 $\begin{array}{l} \textcircledleft \text{Know} \quad & \label{eq:starses} \\ \end{matrix} \end{tarses} \\ \vspace{1mm} \quad & \label{eq:starses} \\ \vspace{1mm} \quad & \label{eq:starses}$  $= \frac{1}{1+r} \left( \frac{1}{1+r} \left( \frac{1}{b_{N}} \left( \frac{2}{u \times x} \right) \frac{2}{p} + \frac{1}{b_{N}} \left( \frac{1}{u \times x} \right) \frac{2}{p} \right) \frac{2}{p}.$  $+ \frac{1}{4\pi} \left( \int_{W} (u dx) \frac{\gamma}{p} + \left( \int_{N} (d^{2}x) \frac{\gamma}{p} \right) \frac{\gamma}{p} \right)$ 

$$= \frac{1}{(1+n^{2})^{2}} \left( \frac{1}{6} \left( \frac{1}{n} \times \right) \frac{1}{p}^{2} + 2 \frac{1}{79} \frac{1}{6} \left( \frac{1}{n} \sqrt{n} \times \right) + \frac{1}{6} \left( \frac{1}{n} \times \right) \frac{1}{2^{2}} \right)$$

$$\frac{1}{p} \frac{1}{6q} \frac{1}{6} \frac$$

het X = AFP at time m. Know  $X_{N} = \frac{1}{D_{n}} \stackrel{\sim}{E}_{N} \left( D_{N} V_{N} \right)$ Sime  $n = N - 1 \implies X_n = \frac{1}{1 + n} \stackrel{\sim}{E}_n \left( \frac{1}{5_{N+1}} \left( \frac{S_{N+1}}{S_{N+1}} \right) \right)$  $= \frac{1}{1+r} \mathcal{E}_{\mathcal{U}} \left( \frac{1}{2} \right) \right) \right) + \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \right) \right) + \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \right) + \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \right) + \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \right) + \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \right) + \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \right) + \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} \right) \right) + \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} \right) \right) + \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) + \frac{1}{$ 

indepute two is 
$$(F \xi_{n+1}(S_n \cdot n) + \tilde{q} \xi_{n+1}(S_n d))$$
  
 $\delta \circ AFP at two  $n = X_n = \frac{1}{1+n} (F \xi_{n+1}(S_n n) + \tilde{q} \xi_{n+1}(S_n d))$   
 $\lambda t \xi_{n}(x) = \frac{1}{1+n} (F \xi_{n+1}(x \cdot n) + \tilde{q} \xi_{n+1}(x \cdot d)) \Rightarrow X_n = \xi_n(S_n)$$ 



Above uses for 
$$N = N - 1$$
.  
In genal : Backwood indution  
() Subfore  $X_{n+1} = AFP$  of true  $n+1 = \int_{n+1} (S_{n+1})$ .  
(2)  $AFP$  of time  $M$ :  $X_{n} = \frac{1}{D_{n}} \sum_{n=1}^{N} (D_{n} \vee_{n})$   
 $= \frac{1}{D_{n}} \sum_{n=1}^{N} \sum_{n=1}^{N} (D_{n} \vee_{n})$   
 $L = \sum_{n=1}^{N} \sum_{n=1}^{N} (D_{n+1} \vee_{n+1}) = \frac{1}{1+r} \sum_{n=1}^{N} \int_{n+1}^{N} (S_{n+1})$ 

 $(same version as) \perp ( \xi_{n+1}(n S_n) \neq t \xi_{n+1}(A S_n) q)$ =  $f_n(S_m)$ , where  $f_n(x) = \frac{1}{1+r} \left[ \frac{1}{2mr} \left( \frac{u \times r}{r} \right)^2 + \frac{1}{2mr} \left( \frac{dx}{q} \right)^2 \right]$ Abon algarthm works to price any security that is a for of the stock price at momenty (e.g. cell (put applious) Noe!

**Question 6.18.** How do we handle other securities? E.g. Asian options (of the form  $g(\sum_{k=0}^{N} S_{k})$ )?

Eq: Asian call offin chike 
$$K \ll mathematically N.$$
  
 $fage \left[ \left( \frac{1}{N+1} \stackrel{N}{\underset{n=0}{\sum} S_n \right) - K \right]^{\dagger}$   
 $f$  duilly use above alg to finice Asian appliance  
but is law if we expend the state process.  
 $L$  add

**Definition 6.24.** We say a *d*-dimensional process  $Y = (Y^1, \ldots, Y^d)$  process is a *state process* if for any security with maturity  $m \leq N$ , and payoff of the form  $V_m = f_m(Y_m)$  for some (non-random) function  $f_m$ , the arbitrage free price must also be of the form  $V_n = f_n(Y_n)$  for some (non-random) function  $f_n$ .

*Remark* 6.25. For state processes given  $f_N$ , we find  $f_n$  by backward induction. The number of computations at time n is of order Range $(Y_n)$ .

*Remark* 6.26. The fact that  $S_n$  is Markov (under  $\tilde{P}$ ) implies that it is a state process.