Lecture 13 (10/1). Please enable video if you can.

- Consider an investor that starts with X_{0} wealth, which he divides between cash and the stock.
- If he has Δ_{0} shares of stock at time 0 , then $X_{1}=\Delta_{0} S_{1}+(1+r)\left(X_{0}-\Delta_{0} S_{0}\right)$.
- We allow the investor to trade at time 1 and hold Δ_{1} shares.
- Δ_{1} may be random, but must be \mathcal{F}_{1}-measurable.
- Continuing further, we see $X_{n+1}=\Delta_{n} S_{n+1}+(1+\underset{\underline{r}}{ })\left(X_{n}-\Delta_{n} S_{n}\right)$.
- Both X and Δ are adapted processes.

Definition 6.6. A self-financing portfolio is a portfolio whose wealth evolves according to
for some adapted process Δ_{n}.

Theorem 6.7. Let $d<1 \pm r<u$, and $\tilde{\boldsymbol{P}}$ be the risk neutral measure, and X_{n} represent the wealth of a portfolio at time n. The portfolio is self-financing portfolio if and only if the discounted wealth $D_{n} X_{n}$ is a martingale under $\tilde{\boldsymbol{P}}$.
Remark 6.8. The only thing we will use in this proof is that $D_{n} S_{n}$ is a martingale under $\tilde{\boldsymbol{P}}$. The interest rate r can be a random adapted process. It is also not special to the binomial model - it works for any model for which there is a risk neutral measure.

* Iou a prase fo of this them er

Before proving Theorem 6.7, we consider a few consequences:
Theorem 6.9. The multi-period binomial model is arbitrage free if and only if $d<1+r<u$.
Definition 6.10. We say the market is arbitrage free if for any self financing portfolio with wealth process X, we have: $X_{0}=0$ and $X_{N} \geqslant 0$ implies $X_{N}=0$ almost surely.
Remark 6.11. The first fundamental theorem of asset pricing states that a risk neutral measure exists if and only if the market is arbitrage free. (We will prove this in more generality later.)

(2) $1+r \geqslant u:$ Have art (short stock \& bouk arch)
(3) $d<1+r<u$. NOS $\nRightarrow a+b$

Kan a RNM Exists. Call if \tilde{p}.

Soy $X_{N} \geqslant 0$, NTS: $X_{N}=0$ alanat smoly.
Pfo $K_{\text {mans }}\left(\right.$ Tham 6.7.7) $D_{n} X_{n}$ is a \tilde{P} ing.

$$
\begin{aligned}
& \Rightarrow D_{0} X_{0}=\tilde{E}\left(D_{N} X_{N}\right) \quad\left(\because D_{n} X_{n}\right) \\
& \Rightarrow \tilde{E}\left(D_{N} X_{N}\right)=0
\end{aligned}
$$

$\Rightarrow k_{\text {uns }}\left\{\begin{array}{l}N(2) D_{N} X_{N} \geqslant 0\end{array} \rightarrow\right.$ Can araly haffar of $D_{N} X_{N}=0$ ($\tilde{P}_{\text {a.s. }}$.

$$
\text { Sine } \begin{aligned}
D_{N} & =(1+r)^{-N} \Rightarrow X_{N}=0 \quad\left(\begin{array}{ll}
\tilde{P} & a . s) \\
& \Rightarrow X_{N}=0 \quad(P a . s .) \\
& \Rightarrow N_{0} \text { ant } \quad Q E D .
\end{array} .\right.
\end{aligned}
$$

Theorem 6.12 (Risk Neutral Pricing Formula). Let $d<1+r<u$, and V_{N} be an \mathcal{F}_{N} measurable random variable. Consider a security that pays V_{N} at maturity time N. For any $n \leqslant N$, the arbitrage free price of this security is given by

$$
\begin{aligned}
& V_{n}=\frac{1}{D_{n}} \tilde{\boldsymbol{E}}_{n}\left(\underline{\left.D_{N} V_{N}\right)}=(1+\tau)^{\eta-N} \cong V_{N} .\right. \\
& \left(V_{N} \rightarrow \text { payoff aft scanty, } e \cdot g V_{N}=\left(S_{N}-\sqrt{N}\right)^{t}\right)^{N}
\end{aligned}
$$

P: Refucation \rightarrow W. Find a self firing pontfatio with
wealth sores X sen that $X_{N}=V_{N}$.
\Rightarrow AFP af security at time $n=X_{n}$.
Find X_{n} : Let $X_{N}=V_{N}$

Fow $n \leqslant N$, hat $\overline{X_{n}=\frac{1}{D_{n}} \tilde{E}_{n}\left(D_{N} V_{N}\right)}=\frac{1}{D_{n}} \tilde{E}_{n}\left(D_{N} X_{N}\right)$
NTs: $X_{a}=$ weath of a seff fio ff
Thueb:7. Frueph to show $D_{n} x_{n}$ is a $\widetilde{p} \mathrm{mg}$.

$$
\begin{aligned}
& \text { Pf: } \tilde{E}_{n}\left(D_{n+1} X_{n+1}\right)=\widetilde{E}_{n}\left(D_{n+1} \cdot \frac{1}{D_{n+1}} \tilde{E}_{n+1}\left(D_{N} X_{N}\right)\right) \\
& =\tilde{E}_{n}\left(\tilde{E}_{n+1}\left(D_{N} X_{N}\right)\right)=\tilde{E}_{t_{\text {opiser }}}\left(\tilde{E}_{n}\left(D_{N} X_{N}\right)\right.
\end{aligned}
$$

$$
=D_{n} X_{n} \quad\left(\text { aff of } X_{n}\right)
$$

$\Rightarrow D_{n} X_{n}$ is a \tilde{P} mg
$\Rightarrow x_{n}=$ weath fo selffor $P f$ (Thme 67.)
Sine $X_{N}=V_{N} \Rightarrow X_{n}=$ AFP of sec at time n.

$$
\Rightarrow \text { AFP of see }=X_{u}=\frac{1}{D_{u}} \tilde{E}_{n}\left(D_{N} X_{N}\right)_{Q E D .}
$$

Remark 6.13. The replicating strategy can be found by backward induction. Let $\omega=\left(\underline{\omega^{\prime}}, \overline{\omega_{n+1}}, \omega^{\prime \prime}\right)$. Then $\omega^{\prime}=\left(\omega_{1}, \ldots \omega_{n}\right)$

$$
\underbrace{\Delta_{n}(\omega)}_{n}=\frac{V_{n+1}\left(\omega^{\prime}, 1, \omega^{\prime \prime}\right)-V_{n+1}\left(\omega^{\prime},-1, \underline{\omega^{\prime \prime}}\right)}{(u-d) S_{n}(\omega)}=\frac{V_{n+1}\left(\omega^{\prime}, 1\right)-V_{n+1}\left(\omega^{\prime},-1\right)}{(u-d) S_{n}(\omega)} \quad \omega^{\prime \prime}=\left(\omega_{u+2}, \cdots \omega_{N}\right)
$$

Pf: $\quad X_{M+1}=\Delta_{n} S_{n+1}+(1+n)\left(X_{n}-\Delta_{n} S_{n}\right) \quad$ (Wealth of ono reap Pt.)

$$
X_{n}=V_{n} \quad\left(R_{e p} p t\right)
$$

$\left.(1) \omega_{n+1}=+1 ; V_{n+1}\left(\underline{\omega}^{\prime}\right)+1, *\right)=\Delta_{n}\left(\omega^{\prime}\right) \underline{u}_{n} S_{n}\left(\omega^{\prime}\right)+(1+v)\left(V_{n}\left(\omega^{\prime}\right)-\Delta_{n}\left(\omega^{\prime}\right) S_{n}\left(\omega^{\prime}\right)\right)$
(2) $\omega_{n+1}=-1: V_{n+1}\left(w^{\prime},-1, *\right)=\Delta_{n}\left(\omega^{\prime}\right) \underline{d} S_{n}\left(\omega^{\prime}\right)+(1+v)\left[V_{n}\left(\omega^{\prime}\right)-\Delta_{n}\left(\omega^{\prime}\right) S_{n}\left(\omega^{\prime}\right)^{\prime}\right]$

$$
\begin{aligned}
(1)-(2) & \Rightarrow V_{n+1}\left(\omega^{\prime},+1\right)-V_{n+1}\left(\omega^{\prime},-1\right)=\Delta_{n}\left(\omega^{\prime}\right) S_{n}\left(\omega^{\prime}\right)(n-d) \\
& \Rightarrow \Delta_{n}\left(\omega^{\prime}\right)=\frac{V_{n+1}\left(\omega^{\prime},+\right)-V_{n+1}\left(\omega^{\prime},-1\right)}{S_{n}\left(\omega^{\prime}\right)(n-d)}
\end{aligned} \theta E D
$$

