Lecture 13 (10/1). Please enable video if you can.

- Consider an investor that starts with X_0 wealth, which he divides between cash and the stock.
- If he has Δ_0 shares of stock at time 0, then $X_1 = \Delta_0 S_1 + (1+r)(X_0 \Delta_0 S_0)$.
- We allow the investor to trade at time 1 and hold Δ_1 shares.
- Δ_1 may be random, but must be \mathcal{F}_1 -measurable.
- Continuing further, we see $X_{n+1} = \Delta_n S_{n+1} + (1+r)(X_n \Delta_n S_n)$.
- Both X and Δ are adapted processes.

Definition 6.6. A *self-financing portfolio* is a portfolio whose wealth evolves according to

for some adapted process Δ_n .

Theorem 6.7. Let d < 1 + r < u, and \tilde{P} be the risk neutral measure, and X_n represent the wealth of a portfolio at time n. The portfolio is self-financing portfolio if and only if the discounted wealth $D_n X_n$ is a martingale under \tilde{P} .

 $X_{n+1} = \Delta_n S_{n+1} + (1+r)(X_n - \Delta_n S_n),$

is un communit

D_m S_m is a

Remark 6.8. The only thing we will use in this proof is that $D_n S_n$ is a martingale under \tilde{P} . The interest rate r can be a random adapted process. It is also not special to the binomial model – it works for any model for which there is a risk neutral measure.

Before proving Theorem 6.7, we consider a few consequences:

Theorem 6.9. The multi-period binomial model is arbitrage free if and only if d < 1 + r < u.

Definition 6.10. We say the market is arbitrage free if for any self financing portfolio with wealth process X, we have: $X_0 = 0$ and $X_N \ge 0$ implies $X_N = 0$ almost surely.

Remark 6.11. The first fundamental theorem of asset pricing states that a risk neutral measure exists if and only if the market is arbitrage free. (We will prove this in more generality later.)

Say $X_N \ge 0$, NTS: $X_N = 0$ almost sinely. Pf: twos (Thu 6.7) Du Xn is a P mg. $\Rightarrow \mathcal{P}_{0}X_{0} = \tilde{E}(\mathcal{P}_{N}X_{N}) \quad (::\mathcal{P}_{u}X_{u}))$

Sine $D_N = (1+r)^{-N} \Rightarrow X_N = 0$ ($\hat{P} a.s.$) $\Rightarrow \chi_{N} = 0$ (P a.s.). > No mb QED,

Theorem 6.12 (Risk Neutral Pricing Formula). Let d < 1 + r < u, and V_N be an \mathcal{F}_N measurable random variable. Consider a security that pays V_N at maturity time N. For any $n \leq N$, the arbitrage free price of this security is given by

$$V_n = \frac{1}{D_n} \tilde{E}_n (D_N V_N) = (1+r)^{N-N} \tilde{E} V_N.$$

$$(V_N \longrightarrow \text{for off} af a security, e.g. $V_N = (S_N - K_n)^{N-N}$

$$P_k: \text{ Refluction} \longrightarrow W. || \text{ find a sell funing fourfalier with health foreass X such that $X_N = V_N.$

$$\Rightarrow A FP \text{ of security at fime } n = X_N.$$

$$\text{Find } X_n : \text{ det } X_N = V_N.$$$$$$

For $N \leq N$, let $X_{N} = \frac{1}{D_{N}} \stackrel{\sim}{=} \frac{1}{D_{N}} \stackrel{\sim}{=}$ NTS: $X_{\alpha} = wealth af a self for <math>ff$. Thubi?, Enorgh to show DyXn is a P mg. $P_{\xi}: \quad \stackrel{\sim}{\in} \left(D_{n+1} X_{n+1} \right) = \left(\stackrel{\sim}{E}_{n} \left(D_{n+1} \cdot \frac{1}{D_{n+1}} \left(D_{n} X_{n} \right) \right) \right)$ $=\widetilde{E}_{\mathcal{N}}\left(\widetilde{E}_{\mathcal{N}\mathcal{M}}\left(\mathcal{D}_{\mathcal{N}}\mathcal{X}_{\mathcal{N}}\right)\right) = \widetilde{E}_{\mathcal{N}}\left(\mathcal{D}_{\mathcal{N}}\mathcal{X}_{\mathcal{N}}\right)$

$$= D_{n} X_{n} \quad (dy \ of X_{n})$$

$$\Rightarrow D_{n} X_{n} \quad \text{is a } P \quad \text{mg}$$

$$\Rightarrow X_{n} = \text{wealth} \quad y_{n} a \quad \text{self for } P_{f} \quad (Thm \ 6.7.)$$

$$\text{Sino } X_{n} = V_{N} \quad \Rightarrow \quad X_{n} = AFP \quad of \quad \text{see at fore } n.$$

$$\Rightarrow AFP \quad of \quad \text{sec} = X_{n} = \frac{1}{D_{n}} \stackrel{\text{C}}{F}_{n} (D_{N} X_{N}) \quad \text{oED},$$

 $(D-(2) \Rightarrow V_{n+1}(\omega',+1)-V_{n+1}(\omega',-1) = \Delta_n(\omega') S_n(\omega') (u-d)$

 $\Rightarrow \Delta_{u}(\omega') = V_{uti}(\omega', t) - V_{uti}(\omega', -1)$ QED $S_{n}(\omega')$ (n-d)