Lecture 12 (9/27). Please enable your video if you can.

6. The multi-period binomial model

6.1. Risk Neutral Pricing.

- In the multi-period binomial model we assume $\Omega=\{ \pm 1\} \underline{\underline{N}}$ corresponds to a probability space with N i.i.d. coins.
- Let $\underline{\underline{u}, d>0}, S_{0}>0$, and define $S_{n+1}= \begin{cases}\underline{u} S_{n} & \omega_{n+1}=1, \\ d & S_{n} \\ \omega_{n+1}=-1\end{cases}$
- u and d are called the up and down factors respectively
- Without loss, can assume $d<u$.
- Always assume no coins are deterministic: $\underline{p_{1}}=\boldsymbol{P}\left(\omega_{n}=1\right)>0$ and $\underline{q}_{1}=1-p_{1}=\boldsymbol{P}\left(\omega_{n}=-1\right)>0$.
- We have access to a bank with interest rat $\overline{\overline{\mathrm{er}}}>\mathrm{Z}_{1}$.
- $D_{n}=(1+r)^{-n}$ be the discount factor ($\$ 1$ at time n is worth $\$ D_{n}$ at time 0 .)

Theorem 6.1. There exists a (unique) equivalent measure $\underline{\tilde{\boldsymbol{P}}}$ under which process $D_{n} S_{n}$ is a martingale if and only if $d<1+r<u$. . In this case $\tilde{\boldsymbol{P}}$ is the probability measure obtained by tossing \tilde{N} i.i.d. coins with

$$
\tilde{\boldsymbol{P}}\left(\omega_{n}=1\right)=\underline{\tilde{p}_{1}}=\frac{1+r-d}{u-d}, \quad \tilde{\boldsymbol{P}}\left(\omega_{n}=-1\right)=\underline{\tilde{q}_{1}}=\frac{u-(1+r)}{u-d} .
$$

Definition 6.2. An equivalent measure $\tilde{\boldsymbol{P}}$ under which $D_{n} S_{n}$ is a martingale is called the risk neutral measure.
Remark 6.3. If there are more than one risky assets, S^{1}, \ldots, S^{k}, then we require $D_{n} S_{n}^{1}, \ldots, D_{n} S_{n}^{k}$ to all be martingales under the risk neutral measure $\tilde{\boldsymbol{P}}$.
Remark 6.4. The Risk Neutral Pricing Formula says that any security with payoff V_{N} at time N has arbitrage free price $\left[V_{n}=\frac{1}{D_{n}} \tilde{\boldsymbol{E}}_{n}\left(D_{-} V_{\underline{N}}\right)\right.$ at time n.

Example 6.5. Consider two markets in the Binomial model setup with the same u, d, r. In the first market the coin flip heads with probability 99%. In the second the coin flips heads with probability 90%. Are the price of call options in these two markets the same?

$\operatorname{Sog} S_{0}=1 \&$ campat V_{0} (Ghue atuk)

Camaution for rede stock: Exalliy the same!

$$
V_{0}=\frac{1}{(1+r)^{2}}\left(\frac{1+r-d}{u-d}\right)^{2}\left(h^{2}-1\right)
$$

- Consider an investor that starts with X_{0} wealth, which he divides between cash and the stock.
- If he has Δ_{0} shares of stock at time 0 , then $X_{1}=\Delta_{0} S_{1}+(1+r)\left(X_{0}-\Delta_{0} S_{0}\right)$.
- We allow the investor to trade at time 1 and hold $\bar{\Delta}_{1}$ shares.
- Δ_{1} may be random, but must be \mathcal{F}_{1}-measurable.
- Continuing further, we see $X_{n+1}=\Delta_{n} S_{n+1}+(1+r)\left(X_{n}-\Delta_{n} S_{n}\right)$.
- Both X and Δ are adapted processes.

Definition 6.6. A self-financing portfolio is a portfolio whose wealth evolves according to

$$
\supset X_{n+1}=\Delta_{n} S_{n+1}+(1+r)\left(X_{n}-\Delta_{n} S_{n}\right)
$$

means no expural cash)

Theorem 6.7. Let $d<1+r<\underline{u}$, and $\tilde{\boldsymbol{P}}$ be the risk neutral measure, and X_{n} represent the wealth of a portfolio at time $\boldsymbol{\sim}$ The portfolio

Remark 6.8. The only thing we will use in this proof is that $D_{n} S_{n}$ is a martingale under $\tilde{\boldsymbol{P}}$. The interest rate r can be a random adapted process. It is also not special to the binomial model - it works for any model for which there is a risk neutral measure.

Before proving Theorem 6.7, we consider a few consequences:
Theorem 6.9. The multi-period binomial model is arbitrage free if and only if $d<1+r<u$.
Remark 6.10. The first fundamental theorem of asset pricing states that a risk neutral measure exists if and only if the market is arbitrage free. (We will prove this in more generality later.)

we have : If $X_{0}=0, \quad X_{N} \geqslant 0 \quad$ thin $X_{N}=0$

(You check.)
(2) San $d<1+r<u$

NTS thene is ma nout in the maket.
Pf: NTS if $X_{0}=0, \quad X_{n}=$ wealth at timene n
$X \geqslant 0$ of a celff fisming putploa
$X_{N} \geqslant 0 \quad$ then $\quad X_{N}=0$
Kmas by thm 6.7 that If X_{n} is selff firang
then $D_{n} X_{n}$ is a $\widetilde{P} m y$.

$$
\begin{aligned}
& \Rightarrow \underbrace{D_{0} X_{0}}_{0_{0}}=\tilde{E_{\text {(20. }}}\left(D_{N} X_{N}\right) \quad \quad(\% \mathrm{mg})
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow D_{N} X_{N}=0 \text { a.s.s. } \Rightarrow X_{N}=0 \text { a.s. }
\end{aligned}
$$

Theorem 6.11 (Risk Neutral Pricing Formula). Let $d<1+r<u$, and V_{N} be an \mathcal{F}_{N} measurable random variable. Consider a security that pays V_{N} at maturity time N. For any $n \leqslant N$, the arbitrage free price of this security is given by

$$
V_{n}=\frac{1}{D_{n}} \tilde{\boldsymbol{E}}_{n}\left(D_{N} V_{N}\right)
$$

Remark 6.12. The replicating strategy can be found by backward induction. Let $\omega=\left(\omega^{\prime}, \omega_{n+1}, \omega^{\prime \prime}\right)$. Then

$$
\Delta_{n}(\omega)=\frac{V_{n+1}\left(\omega^{\prime}, 1, \omega^{\prime \prime}\right)-V_{n+1}\left(\omega^{\prime},-1, \omega^{\prime \prime}\right)}{(u-d) S_{n}(\omega)}=\frac{V_{n+1}\left(\omega^{\prime}, 1\right)-V_{n+1}\left(\omega^{\prime},-1\right)}{(u-d) S_{n}(\omega)}
$$

6.2. State processes.

Question 6.13. Consider the N-period binomial model, and a security with payoff V_{N}. Let X_{n} be the arbitrage free price at time $n \leqslant N$, and Δ_{n} be the number of shares in the replicating portfolio. What is an algorithm to find X_{n}, Δ_{n} for all $n \leqslant N$? How much is the computational time?

Theorem 6.14. Suppose a security pays $V_{N}=g\left(S_{N}\right)$ at maturity N for some (non-random) function g. Then the arbitrage free price at time $n \leqslant N$ is given by $V_{n}=f_{n}\left(S_{n}\right)$, where:
(1) $f_{N}(x)=V_{N}(x)$ for $x \in \operatorname{Range}\left(S_{N}\right)$.
(2) $f_{n}(x)=\frac{1}{1+r}\left(\tilde{p} f_{n+1}(u x)+\tilde{q} f_{n+1}(d x)\right)$ for $x \in \operatorname{Range}\left(S_{n}\right)$.

Remark 6.15. Reduces the computational time from $O\left(2^{N}\right)$ to $O\left(\sum_{0}^{N}\left|\operatorname{Range}\left(S_{n}\right)\right|\right)=O\left(N^{2}\right)$ for the Binomial model.
Remark 6.16. Can solve this to get $f_{n}(x)=\frac{1}{(1+r)^{N-n}} \sum_{k=0}^{N-n}\binom{N-n}{k} \tilde{p}^{k} \tilde{q}^{N-n-k} f_{N}\left(x u^{k} d^{N-n-k}\right)$

Question 6.17. How do we handle other securities? E.g. Asian options (of the form $g\left(\sum_{0}^{N} S_{k}\right)$)?

