Lecture 12 (9/27). Please enable your video if you can.

6. The multi-period binomial model

6.1. Risk Neutral Pricing.

- In the multi-period binomial model we assume $\Omega = \{\pm 1\}^{N}$ corresponds to a probability space with N i.i.d. coins.
- Let u, d > 0, $S_0 > 0$, and define $S_{n+1} = \begin{cases} uS_n & \omega_{n+1} = 1, \\ dS_n & \omega_{n+1} = -1. \end{cases}$
- u and d are called the up and down factors respectively.
- Without loss, can assume d < u.
- Always assume no coins are deterministic: $\underline{p_1} = \underline{P}(\omega_n = 1) > 0$ and $\underline{q_1} = 1 p_1 = \underline{P}(\omega_n = -1) > 0$.
- We have access to a bank with interest rate r > -1.

• $D_n = (1+r)^{-n}$ be the discount factor (\$1 at time n is worth \$D_n\$ at time 0.)

Theorem 6.1. There exists a (unique) equivalent measure $\tilde{\underline{P}}$ under which process $D_n S_n$ is a martingale if and only if d < 1 + r < u. In

Definition 6.2. An equivalent measure \tilde{P} under which D_nS_n is a martingale is called the *risk neutral measure*.

this case \tilde{P} is the probability measure obtained by tossing N i.i.d. coins with $\tilde{\boldsymbol{P}}(\omega_n = 1) = \tilde{\underline{p}}_1 = \begin{vmatrix} 1 + r - d \\ u - d \end{vmatrix}, \qquad \tilde{\boldsymbol{P}}(\omega_n = -1) = \tilde{\underline{q}}_1 = \begin{vmatrix} u - (1 + r) \\ u - d \end{vmatrix}.$

Remark 6.3. If there are more than one risky assets, S^1, \ldots, S^k , then we require $D_n S_n^1, \ldots, D_n S_n^k$ to all be martingales under the risk neutral measure P.

Remark 6.4. The Risk Neutral Pricing Formula says that any security with payoff V_N at time N has arbitrage free price $V_n = \frac{1}{D_n} \tilde{E}_n(D_N V_N)$ at time n. (Note AFP at time 1) = Vn = + E(D, VN)

Example 6.5. Consider two markets in the Binomial model setup with the same u, d, r. In the first market the coin flip heads with probability 99%. In the second the coin flips heads with probability 90%. Are the price of call options in these two markets the same?

Song
$$S_0 = 1$$
 & compat V_0 (like ofthe)
$$v_2 = v_2 - 1$$

$$V_0 = \frac{1}{E} \left(\frac{D}{V_2} \right)$$

$$V$$

Calculian for ved stock:
$$f=xally fla same!$$

$$V_{6} = \frac{1}{(HN^{2})} \left(\frac{1+v-d}{v-d}\right)^{2} \left(\frac{v^{2}-1}{v-d}\right)$$

- Consider an investor that starts with X_0 wealth, which he divides between cash and the stock.
- If he has Δ_0 shares of stock at time 0, then $X_1 = \Delta_0 S_1 + (1+r)(X_0 \Delta_0 S_0)$.
- We allow the investor to trade at time 1 and hold Δ_1 shares.
- Δ_1 may be random, but must be \mathcal{F}_1 -measurable.
- Continuing further, we see $X_{n+1} = \Delta_n S_{n+1} + (1+r)(X_n \Delta_n S_n)$.

Both X and Δ are adapted processes.

Definition 6.6. A self-financing portfolio is a portfolio whose wealth evolves according to

 $\underbrace{X_{n+1}} = \underbrace{\Delta_n S_{n+1}}_{} + (1+r)(X_n - \Delta_n S_n),$ for some adapted process Δ_n .

Theorem 6.7. Let $d < 1 \pm r < u$, and \tilde{P} be the risk neutral measure, and X_n represent the wealth of a portfolio at time \tilde{n} The portfolio is self-financing portfolio if and only if the discounted wealth D_nX_n is a martingale under \tilde{P} .

Remark 6.8. The only thing we will use in this proof is that D_nS_n is a martingale under \tilde{P} . The interest rate r can be a random adapted process. It is also not special to the binomial model – it works for any model for which there is a risk neutral measure.

(Day of P is that Dn Sn is a P mg)

Before proving Theorem 6.7, we consider a few consequences: **Theorem 6.9.** The multi-period binomial model is arbitrage free if and only if d < 1 + r < u. Remark 6.10. The first fundamental theorem of asset pricing states that a risk neutral measure exists if and only if the market is arbitrage free. (We will prove this in more generality later.) Pf: It No antitroge: We say there is no autitye in the mater if for any celf france portation with wealth process Xu, We have: If $X_0 = 0$, $X_0 > 0$ thun $X_0 = 0$ about smally () Clearly de 1+r < d or 1+r > n -> there is and.

(2) Say d<1+r< n.
NTS Home is no only in the matert. Pf: NTS If X = 0, Xn = wealth at time n of a cell bining foutfilia $\frac{1}{2}$ Know by the 6.7 that If Xn is self firing

Thum
$$D_n X_n$$
 is a \widehat{P} my.

$$P = \widehat{E}_{nn}(D_n X_n) \qquad \text{(ising)}$$

$$P = \widehat{E}_{nn}(D_n X_n) \qquad \text{(ising)}$$

$$P = \widehat{E}_{nn}(D_n X_n) = 0 \qquad \text{(boson } X_n > 0 \text{ a.s.}$$

$$P = \widehat{D}_n X_n = 0 \quad \text{a.s.} \qquad P = 0 \quad \text{a.s.}$$

Theorem 6.11 (Risk Neutral Pricing Formula). Let d < 1 + r < u, and V_N be an \mathcal{F}_N measurable random variable. Consider a security

that pays
$$V_N$$
 at maturity time N . For any $n \leq N$, the arbitrage free price of this security is given by
$$V_n = \frac{1}{D_n} \tilde{\boldsymbol{E}}_n(D_N V_N) \,.$$

Remark 6.12. The replicating strategy can be found by backward induction. Let $\omega = (\omega', \omega_{n+1}, \omega'')$. Then $V_{-1}(\omega', 1, \omega'') = V_{-1}(\omega', -1, \omega'') \qquad V_{-1}(\omega', 1) = V_{-1}(\omega', -1)$

$$\Delta_n(\omega) = \frac{V_{n+1}(\omega', 1, \omega'') - V_{n+1}(\omega', -1, \omega'')}{(u - d)S_n(\omega)} = \frac{V_{n+1}(\omega', 1) - V_{n+1}(\omega', -1)}{(u - d)S_n(\omega)}$$

Proof of Theorem 6.7 part 1. Suppose X_n is the wealth of a self-financing portfolio. Need to show $D_n X_n$ is a martingale under $\tilde{\boldsymbol{P}}$.

Proof of Theorem 6.7 part 2. Suppose $D_n X_n$ is a martingale under $\tilde{\boldsymbol{P}}$. Need to show X_n is the wealth of a self-financing portfolio.

6.2. State processes.

Question 6.13. Consider the N-period binomial model, and a security with payoff V_N . Let X_n be the arbitrage free price at time $n \leq N$, and Δ_n be the number of shares in the replicating portfolio. What is an algorithm to find X_n , Δ_n for all $n \leq N$? How much is the computational time?

Theorem 6.14. Suppose a security pays $V_N = g(S_N)$ at maturity N for some (non-random) function g. Then the arbitrage free price at time $n \leq N$ is given by $V_n = f_n(S_n)$, where:

(1)
$$f_N(x) = V_N(x)$$
 for $x \in \text{Range}(S_N)$.

(1)
$$f_N(x) = V_N(x)$$
 for $x \in \text{Range}(S_N)$.
(2) $f_n(x) = \frac{1}{1+r} (\tilde{p}f_{n+1}(ux) + \tilde{q}f_{n+1}(dx))$ for $x \in \text{Range}(S_n)$.

Remark 6.15. Reduces the computational time from $O(2^N)$ to $O(\sum_{n=0}^{N} |\text{Range}(S_n)|) = O(N^2)$ for the Binomial model.

Remark 6.16. Can solve this to get
$$f_n(x) = \frac{1}{(1+r)^{N-n}} \sum_{k=0}^{N-n} {N-n \choose k} \tilde{p}^k \tilde{q}^{N-n-k} f_N(xu^k d^{N-n-k})$$

Question 6.17. How do we handle other securities? E.g. Asian options (of the form $g(\sum_{0}^{N} S_k)$)?