Lecture 11 (9/24). Please Enable Your Video If you Can

hast time : D Chaze of measure (Equinlut Monenes) 2 Riesk Neutral Pricing Jourta.

5.5. Change of measure.

Example 5.52. Consider i.i.d. coin tosses with $P(\omega_n = 1) = p_1$ and $P(\omega_n = -1) = q_1 = 1 - p_1$. Let u, d > 0, r > -1. Let $S_{n+1}(\omega) = uS_n(\omega)$ if $\omega_{n+1} = 1$, and $S_{n+1}(\omega) = dS_n(\omega)$ if $\omega_{n+1} = -1$. Let $D_n = (1+r)^{-n}$ be the "discount factor".

Suppose we now invented a new "risk neutral" coin that comes up heads with probability \tilde{p}_1 and tails with probability $\tilde{q}_1 = 1 - \tilde{p}_1$. Let \tilde{P}, \tilde{E}_n etc. denote the probability and conditional expectation with respect to the new "risk neutral" coin. Find \tilde{p}_1 so that $D_n S_n$ is a \tilde{P} martingale.

Theorem 5.53. Consider a market where S_n above models a stock price, and r is the interest rate with 0 < d < 1 + r < u. The coins land heads and tails with probability p_1 and q_1 respectively. If you have a derivative security that pays V_N at time N, then the arbitrage free price of this security at time $n \leq N$ is given by

$$V_n = \frac{1}{D_n} \tilde{\boldsymbol{E}}_n D_N V_N = (1+r)^{n-N} \tilde{\boldsymbol{E}}_n V_N \,.$$

Remark 5.54. Even though the stock price changes according to a coin that flips heads with probability p_1 , the arbitrage free price is computed using conditional expectations using the risk neutral probability. So when computing $\tilde{E}_n V_N$, we use our new invented "risk neutral" coin that flips heads with probability \tilde{p}_1 and tails with probability \tilde{q}_1 .

(IOU PL)

Let p: Ω → [0, 1] be a probability mass function on Ω, and P(A) = Σ_{ω∈A} p(ω) be the probability measure.
Let p: Ω → [0, 1] be another probability mass function, and define a second probability measure P by P(A) = Σ_{ω∈A} p(ω).
Definition 5.55. We say P and P are equivalent if for every A ∈ F_N, P(A) = 0 if and only if P(A) = 0.
Remark 5.56. When Ω is finite, P and P are equivalent if and only if we have p(ω) = 0 ⇔ p(ω) = 0 for all ω ∈ Ω.
We let E, E_n denote the expectation and conditional expectations with respect to P respectively.

 $P(A) = \sum_{i \in A} f(a)$. (prot of A occuring mole P) $\widehat{P}(A) = \sum_{\omega \in A} \widehat{F}(\omega) (A \wedge A \wedge P)$

The out Example 5.52. Find $F_1 & A_{q_1}^2$ so that $D_n S_n$ is a P_{mq_1} . $X_{n+1} = \begin{cases} n & i \\ d & i \end{cases}$ if n+1 to in is beads $M_{+1} = \begin{cases} d & i \end{cases}$ if n = 1 is a T_{-1} is T_{-1} is a T_{-1} is T_{-1} is a Work out Example 5.52. Sati = Xati Su & Xati is ind of Fa. (under P). $E_{n}S_{n+1} = E_{n}(X_{n+1}S_{n}) = S_{n}E_{n}X_{n+1} = S_{n}E_{n}X_{n+1}$

= S_{M} $\left(\begin{array}{c} p \\ q \\ q \\ d \end{array} \right)$ Want Da Sa to be a P my (=) En (Dati Suti) - Want Da Sn. $\underset{(1+r)^{Wt1}}{\Longrightarrow} \underset{E_{N}}{\overset{Want}{\longrightarrow}} \underset{(1+r)^{M}}{\overset{Want}{\longrightarrow}} \underset{(1$ Ver En Smil = (pu + g, L) Sn.

 \rightarrow $(\mathcal{F}_{n+q}, d) \mathcal{S}_{n} = (1+r) \mathcal{S}_{n}$ \Rightarrow $\left[\hat{p}_{1} u + \hat{q}_{1} d = 1 + 4 \right]$ $\Rightarrow f_1 n + (1 - f_1)d = 1 + r \quad (=) \quad f_1 =$ 1+r - d $\begin{bmatrix} \vdots & f \end{bmatrix} = \frac{f - d}{u - d} & \begin{bmatrix} f \\ g \\ g \end{bmatrix} = \frac{u - (u - f)}{u - d}$ Ma

Example 5.57. Let Ω be the sample space corresponding to N i.i.d. fair coins (heads is 1, tails is -1). Let $\underline{a} \in \mathbb{R}$ and define $X_{n+1}(\omega) = X_n(\omega) + \omega_{n+1} + a$. For what a is there an equivalent measure \tilde{P} such that X is a martingale?

(Trug & wank this and))

6. The multi-period binomial model

6.1. Risk Neutral Pricing.

• In the multi-period binomial model we assume $\Omega = \{\pm 1\}^{\underline{N}}$ corresponds to a probability space with N i.i.d. coins.

- Let $u, d > 0, S_0 > 0$, and define $S_{n+1} = \begin{cases} uS_n & \omega_{n+1} = 1, \\ dS_n & \omega_{n+1} = -1. \end{cases}$
- u and d are called the up and down factors respectively.
- Without loss, can assume d < u.
- Always assume no coins are deterministic: $p_1 = \mathbf{P}(\omega_n = 1) > 0$ and $q_1 = 1 p_1 = \mathbf{P}(\omega_n = -1) > 0$.
- We have access to a bank with interest rate r > -1.
- $D_n = (1+r)^{-n}$ be the discount factor (<u>\$1 at time n</u> is worth <u>\$D_n at time 0</u>.)

Theorem 6.1. There exists a (unique) equivalent measure \tilde{P} under which process $D_n S_n$ is a martingale if and only if d < 1 + r < u. In this case \tilde{P} is the probability measure obtained by tossing \tilde{N} i.i.d. coins with

$$\tilde{P}(\omega_n = 1) = \tilde{p}_1 = \frac{1+r-d}{u-d}, \qquad \tilde{P}(\omega_n = -1) = \tilde{q}_1 = \frac{u-(1+r)}{u-d}.$$

Definition 6.2. An equivalent measure \tilde{P} under which D_nS_n is a martingale is called the *risk neutral measure*.

Remark 6.3. If there are more than one risky assets, S^1, \ldots, S^k , then we require $D_n S_n^1, \ldots, D_n S_n^k$ to all be martingales under the risk neutral measure \tilde{P} .

Remark 6.4. The Risk Neutral Pricing Formula says that any security with payoff V_N at time N has arbitrage free price $V_n = \frac{1}{D_n} \tilde{E}_n(D_N V_N)$ at time n.

Pf of them Gol: I) If d < 1 + r < n, then there $f_1 = \frac{1 + r - d}{n - d} \in (0, 1)$ $\tilde{\gamma}_{1} = \frac{N - (1+m)}{N - d} \in (0, 1)$ By example alone we bear $E_n(D_{n+1}S_{n+1}) = D_nS_n$ > P can be abtained by using it d tossels of a coin that have beads with for FL trils with for FI. h

2 Reverse dimetjon; Duly choice of Filly for which En (Day Sun) = Da Su is given by $F_1 = \frac{n + n - d}{n - d} + F_1 = \frac{n - (1+n)}{n - d}$. If the < d > Fi < O > Pic not a prot- measure. If $I + r = d \Rightarrow F_1 = 0$. P is a find meas but P is NOT equiv to P.

If Itr>n = Ji<0 > P is not a prof meas, L IIT = QUA =) $\widetilde{\gamma}_1 = 0 \Rightarrow \widetilde{P}$ is a first mens but NOT equip to P. OED,