Lecture 11 (9/24). Please Enable Your Video If you Can
Last time: (1) (hase of mersone (Equinurit Mownes)
(2) Rishe Nestual Pricing foula.

5.5. Change of measure.

cast time

Example 5.52. Consider i.i.d. coin tosses with $\boldsymbol{P}\left(\omega_{n}=1\right)=p_{1}$ and $\boldsymbol{P}\left(\omega_{n}=-1\right)=q_{1}=1-p_{1}$. Let $u, d>0, r>-1$. Let $S_{n+1}(\omega)=u S_{n}(\omega)$ if $\omega_{n+1}=1$, and $S_{n+1}(\omega)=d S_{n}(\omega)$ if $\omega_{n+1}=1$. Let $D_{n}=(1+r)^{-n}$ be the "discount factor".

Suppose we now invented a new "risk neutral" coin that comes up heads with probability \tilde{p}_{1} and tails with probability $\tilde{q}_{1}=1-\tilde{p}_{1}$ Let $\tilde{\boldsymbol{P}}, \tilde{\boldsymbol{E}}_{n}$ etc. denote the probability and conditional expectation with respect to the new "risk neutral" coin. Find \tilde{p}_{1} so that $D_{n} S_{n}$ is a $\tilde{\boldsymbol{P}}$ martingale.

Theorem 5.53. Consider a market where S_{n} above models a stock price, and r is the interest rate with $0<d<1+r<u$. The coins land heads and tails with probability p_{1} and q_{1} respectively. If you have a derivative security that pays V_{N} at time N, then the arbitrage free price of this security at time $n \leqslant N$ is given by

$$
V_{n}=\frac{1}{D_{n}} \tilde{\boldsymbol{E}}_{n} D_{N} V_{N}=(1+r)^{n-N} \tilde{\boldsymbol{E}}_{n} V_{N} .
$$

Remark 5.54. Even though the stock price changes according to a coin that flips heads with probability p_{1}, the arbitrage free price is computed using conditional expectations using the risk neutral probability. So when computing $\tilde{\boldsymbol{E}}_{n} V_{N}$, we use our new invented "risk neutral" coin that flips heads with probability \tilde{p}_{1} and tails with probability \tilde{q}_{1}.

- Let $p: \Omega \rightarrow[0,1]$ be a probability mass function on Ω, and $\boldsymbol{P}(A)=\sum_{\omega \in A} p(\omega)$ be the probability measure.
- Let $\tilde{\tilde{p}}: \Omega \rightarrow[0,1]$ be another probability mass function, and define a second probability measure $\tilde{\boldsymbol{P}}$ by $\tilde{\boldsymbol{P}}(A)=\sum_{\omega \in A} \tilde{p}(\omega)$.

Definition 5.55. We say \boldsymbol{P} and $\tilde{\boldsymbol{P}}$ are equivalent if for every $A \in \mathcal{F}_{N}, \boldsymbol{P}(A)=0$ if and only if $\tilde{\boldsymbol{P}}(A)=0$.
Remark 5.56. When Ω is finite, \boldsymbol{P} and $\tilde{\tilde{\boldsymbol{P}}}$ are equivalent if and only if we have $\overline{p(\omega)}=0 \Longleftrightarrow \tilde{p}(\omega)=0$ for all $\omega \in \Omega$.
We let $\tilde{\boldsymbol{E}}, \tilde{\boldsymbol{E}}_{n}$ denote the expectation and conditional expectations with respect to $\tilde{\boldsymbol{P}}$ respectively.

Work out Earanple e. se? Find $\tilde{\phi}_{1} \& \tilde{q}_{1}$ so thant $D_{n} S_{n}$ is a $\tilde{P} \mathrm{mg}$,

$$
\begin{aligned}
& X_{n+1}=\left\{\begin{array}{llll}
n & \text { if } & n^{*}+\left.1\right|^{\text {th }} & \text { ain is beads } \\
d & n & n & n \\
\text { a tails. }
\end{array}\right. \\
& \left.S_{n+1}=X_{n+1} S_{n} \quad \& \quad X_{n+1} \text { is ind of } f_{n} \text { (nailer }\right) . \\
& \tilde{E}_{n} S_{n+1}=\tilde{E}_{n}\left(X_{n+1} S_{n}\right)=S_{n} \tilde{E}_{n} X_{n+1}=S_{n} \tilde{E} X_{n+1}
\end{aligned}
$$

$$
=S_{n}\left(\tilde{p}_{1} u+\tilde{q}_{1} d\right)
$$

Wat $D_{n} S_{n}$ to be a \tilde{P} my

$$
\begin{aligned}
& \Leftrightarrow \tilde{E}_{n}\left(D_{n+1} S_{n+1}\right) \stackrel{W_{\text {ant }}}{\underline{W_{a n t}}} D_{n} S_{n} \\
& \Leftrightarrow \frac{1}{(1+r-)^{n}} S_{n} \Leftrightarrow \tilde{E}_{n+r} S_{n+1} \Leftrightarrow \tilde{E}_{n} S_{n+1}^{W_{m+1}}=(1+n) S_{n} \\
& \text { Wee } \tilde{E}_{n} S_{n+1}=\left(\tilde{q}_{n}+\tilde{q}_{1} d\right) S_{n}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow\left(\tilde{p}_{1} u+\tilde{q}_{1} d\right) S_{n}=(1+\tau) S_{n} \\
& \Rightarrow \tilde{q}_{1} u+\tilde{q}_{1} d=1+r \\
& \Rightarrow \tilde{F}_{1} n+\left(1-\tilde{p}_{1}\right) d=1+r \quad \tilde{\phi}_{1}=\frac{1+r-d}{u-d}
\end{aligned}
$$

\therefore If we chase $\tilde{p}_{1}=\frac{1+x-d}{n-d} \quad \& \quad \tilde{q}_{1}=1-\tilde{p}_{1}=\frac{u-(1+\tau)}{u-d}$ then $D_{n} S_{4}$ is a P mg.

Example 5.57. Let Ω be the sample space corresponding to N i.i.d. $\underset{\tilde{\tilde{P}}}{\text { fair }}$ coins (heads is 1 , tails is -1). Let $a \in \mathbb{R}$ and define $X_{n+1}(\omega)=X_{n}(\omega)+\omega_{n+1}+a$. For what a is there an equivalent measure $\tilde{\boldsymbol{P}}$ such that X is a martingale?

6. The multi-period binomial model

6.1. Risk Neutral Pricing.

- In the multi-period binomial model we assume $\Omega=\{ \pm 1\} \underline{N}$ corresponds to a probability space with N i.i.d. coins.
- Let $u, d>0, S_{0}>0$, and define $S_{n+1}= \begin{cases}u S_{n} & \omega_{n+1}=1, \\ d S_{n} & \omega_{n+1}=-1 .\end{cases}$
- u and d are called the up and down factors respectively.
- Without loss, can assume $d<u$.
- Always assume no coins are deterministic: $p_{1}=\boldsymbol{P}\left(\omega_{n}=1\right)>0$ and $q_{1}=1-p_{1}=\boldsymbol{P}\left(\omega_{n}=-1\right)>0$.
- We have access to a bank with interest rate $r>-1$.

Theorem 6.1. There exists a (unique) equivalent measure $\tilde{\boldsymbol{P}}$ under which process $D_{n} S_{n}$ is a martingale if and only if $d<1+r<u$. In this case $\tilde{\boldsymbol{P}}$ is the probability measure obtained by tossing i.i.d. coins with

$$
\tilde{\boldsymbol{P}}\left(\omega_{n}=1\right)=\tilde{p}_{1}=\frac{1+r-d}{u-d}, \quad \tilde{\boldsymbol{P}}\left(\omega_{n}=-1\right)=\tilde{q}_{1}=\frac{u-(1+r)}{u-d} .
$$

Definition 6.2. An equivalent measure $\underline{\tilde{P}}$ under which $\overline{D_{n} S_{n}}$ is a martingale is called the risk neutral measure.
Remark 6.3. If there are more than one risky assets, S^{1}, \ldots, S^{k}, then we require $D_{n} S_{n}^{1}, \ldots, D_{n} S_{n}^{k}$ to all be martingales under the risk neutral measure $\tilde{\boldsymbol{P}}$.
Remark 6.4. The Risk Neutral Pricing Formula says that any security with payoff V_{N} at time N has arbitrage free price $V_{n}=\frac{1}{D_{n}} \tilde{\boldsymbol{E}}_{n}\left(D_{N} V_{N}\right)$ at time n.
of of then 6.1:
(1) If $d<1+r<n$, then hare $\tilde{\phi}_{1}=\frac{1+r-d}{n-d} \in(0,1)$

$$
\tilde{q}_{1}=\frac{n-(1+r)}{n-d} \in(0,1)
$$

By exante alone se lower $E_{n}\left(D_{n+1} S_{n+1}\right)=D_{n} S_{n}$
$\Rightarrow \widetilde{p}$ can be attains by sing aid tossers
of a coin that las heats with for of this
(2) Revarce dinetion:

Ouly curice of \tilde{q}_{1} \& \tilde{q}_{1} for widh $\tilde{E}_{n}\left(D_{n+1} S_{n+1}\right)=D_{n} S_{n}$ is opren b. $\tilde{F}_{1}=\frac{1+r-d}{n-d} \times \tilde{x}_{1}=\frac{n-(1+r)}{n-d}$
If \$1+r<d $\Rightarrow \tilde{F}_{1}<0 \Rightarrow \tilde{p}$ is mit a fool weare.
If $1+r=d \Rightarrow \tilde{q}_{1}=0 . \widehat{p}$ is a frot mees
boit \tilde{P} is NOT equir to P.

If $1+r>n \Rightarrow \tilde{q}_{1}<0 \Rightarrow \tilde{p}$ is mat a prat moses,
\& $1+\pi=\sin \Rightarrow \tilde{q}_{1}=0 \Rightarrow \tilde{p}^{2}$ is a prot coves bit NOT equiv to P.

OED

