Lecture 10 (9/22). Please enable your video if you can.

Question 5.50. Let ξ_n be a martingale with $E\xi_1 = 0$ Let Δ_n be an adapted process, $X_0 \in \mathbb{R}$ and define $X_{n+1} = X_n + \Delta_n \xi_{n+1}$. Is X a martingale? (New we have $X_0 \in \mathbb{R}$ and $X_0 \in \mathbb{R}$ Remark 5.51. Think of ξ_n as the outcome of a fair game being played. You decide to bet on this game. Let Δ_n be your bet at time n; your return from this bet is $\Delta_n \xi_{n+1}$, and thus your cumulative return at time n+1 is $X_{n+1} = X_n + \Delta_n \xi_{n+1}$. D'Adapted : Xuti = Xn + An Smith Sa-meas Sa-meas Sunt meas Sa-meas (11) (assuption) ind) =) adathed. MER L

(2)NTS $E_{M} \chi_{M+1} = \chi_{M}$

 $P_{\xi}: E_{M} X_{n+1} = E_{M} \left(X_{u} + \Delta_{u} \overline{S}_{u+1} \right)$ $= E_{n} \chi_{n} + E_{n} (\Delta_{n} \tilde{\beta}_{n+1})$ $= X_{1} + E_{1}(\Box_{n} \overline{S}_{n+1}) \qquad \begin{pmatrix} E_{n} X_{n} = X_{n} \\ sime X_{n} is \overline{E}_{n} - meas \\ sime X_{n} is \overline{E}_{n} - meas \end{pmatrix}$ (" An is &n meas), $= X_{n} + \Delta_{n} E_{n} \delta_{n+1}$

= X_M + A_M 3_M 2 Docut simplify further. Will work if we knew E Zant is ind of En. Otherwise can't simplify fuiller.

Prop ? Say Mis a wq, het Sut = Mut - Mu.

An -> any adapted proces. $X_{n+1} = X_n + \Delta_n \left(M_{n+1} - M_n \right) = X_n + \Delta_n S_{n+1}.$ Claim: In this case X is a mg. $P_{1}: E_{M} X_{n+1} = E_{M} \left(X_{M} + \Delta_{M} \left(M_{n+1} - M_{n} \right) \right)$ $= X_{M} + \Delta_{M} E_{M} \left(M_{n+1} - M_{n} \right)$ $({}_{0} {}_{0$ $> \chi_{M}$

5.5. Change of measure.

Example 5.52. Consider i.i.d. coin tosses with $P(\omega_n = 1) = \underline{p}_1$ and $P(\omega_n = -1) = \underline{q}_1 = 1 - p_1$. Let $\underline{u}, \underline{d} > 0, \underline{r} > -1$. Let $S_{n+1}(\omega) = uS_n(\omega)$ if $\omega_{n+1} = 1$, and $S_{n+1}(\omega) = \underline{d}S_n(\omega)$ if $\omega_{n+1} = -1$. Let $D_n = (1+r)^{-n}$ be the "discount factor". Suppose we now invented a new "risk neutral" coin that comes up heads with probability \tilde{p}_1 and tails with probability $\tilde{q}_1 = 1 - \tilde{p}_1$.

Suppose we now invented a new "risk neutral" coin that comes up neads with probability p_1 and tans with probability $q_1 \equiv 1 - p_1$. Let \tilde{P}, \tilde{E}_p etc. denote the probability and conditional expectation with respect to the new "risk neutral" coin. Find \tilde{p}_1 so that $D_n S_n$ is a \tilde{P} martingale.

Theorem 5.53. Consider a market where S_n above models a stock price, and r is the interest rate with 0 < d < 1 + r < u. The coins land heads and tails with probability p_1 and q_1 respectively. If you have a derivative security that pays V_N at time N, then the arbitrage free price of this security at time $n \leq N$ is given by

$$V_n = \frac{1}{D_n} \tilde{\boldsymbol{E}}_n \left(\frac{D_N V_N}{D_N} \right) = (1+r)^{n-N} \tilde{\boldsymbol{E}}_n V_N. \qquad (IOV \ a \ prod \) \qquad (V_n = \frac{1}{D_n} \tilde{\boldsymbol{E}}_n V_N) = (1+r)^{n-N} \tilde{\boldsymbol{E}}_n V_N.$$

Remark 5.54. Even though the stock price changes according to a coin that flips heads with probability p_1 , the arbitrage free price is computed using conditional expectations using the risk neutral probability. So when computing $\tilde{E}_n V_N$, we use our new invented "risk neutral" coin that flips heads with probability \tilde{p}_1 and tails with probability \tilde{q}_1 .

- Let p: Ω → [0,1] be a probability mass function on Ω, and P(A) = Σ_{ω∈A} p(ω) be the probability measure.
 Let p̃: Ω → [0,1] be another probability mass function, and define a second probability measure P̃ by P̃(A) = Σ_{ω∈A} p̃(ω). **Definition 5.55.** We say \underline{P} and $\underline{\tilde{P}}$ are equivalent if for every $\underline{A} \in \mathcal{F}_N$, $\underline{P}(\underline{A}) = 0$ if and only if $\underline{\tilde{P}}(\underline{A}) = 0$.

Remark 5.56. When $\underline{\Omega}$ is finite, \underline{P} and $\underline{\tilde{P}}$ are equivalent if and only if we have $p(\omega) = 0 \iff \tilde{p}(\omega) = 0$ for all $\omega \in \Omega$.

We let \tilde{E} , \tilde{E}_n denote the expectation and conditional expectations with respect to \tilde{P} respectively.

Work out Example 5.52

Knows

1 abd coin

new coin)

V

hoal: Want of so that Da Sa is a Prog. i.e. $E_{\mathcal{M}}(D_{n+1}, S_{n+1}) = D_{\mathcal{M}}S_{\mathcal{M}}$ Let's compute En Snti Wmt1 = 1 $\text{let } \chi_{\mathfrak{n}_{f_1}}(\omega) = \begin{cases} n \\ d \end{cases}$ $\omega_{n+1} = -1$

 $S_{m+1} = X_{m+1} S_m$ Nole

& X is & meas. & X is ind of Fn!

 $\Rightarrow E_{n} S_{n+1} = E_{n} (X_{n+1} S_{n})$

 $= S_{n} \stackrel{\sim}{\in} X_{n+1}$ $= S_{M} \left(\frac{2}{E} \chi_{MH} \right)$

(° Sn is Fn meas) (" Xn is ind of En)

 $= S_{n} \left(\tilde{f}_{1} + (1 - \tilde{f}_{1}) d \right).$

 \Rightarrow $E_{n} S_{n+1} = (F_{n} + (1-F_{n})d) \cdot S_{n}$ Wont Pri Sa to be a Pring. Want En (Dut Suit) = Du Su. $\stackrel{(=)}{=} \stackrel{(=)}{=} \stackrel{($

 $(=) E_{M} S_{M+1} = (1+\tau)S_{M}.$

 $(=) \left\{ \begin{array}{c} f_{1} u + (1 - f_{1}) \\ f_{1} u + (1 - f_{1}) \\ \end{array} \right\} = 1 + \gamma$