Lecture 10 (9/22). Please enable your video if you can.
has t time $i$ is a mg $\Rightarrow E_{2} M_{n}=E M_{1}$ fr.
(constant expectation)
Camise is false: $E M_{n}=E_{2} M_{1}=E M_{M+1} \nRightarrow M$ is a mg .

Question 5.50. Let $\xi_{n}$ be a martingale with $\boldsymbol{E} \xi_{1}=0$ Let $\Delta_{n}$ be an adapted process, $X_{0} \in \mathbb{R}$ and define $X_{n+1}=X_{n}+\Delta_{n} \xi_{n+1}$. Is $X a$ martingale? (Nad what $H$ ). $E E \xi_{n}=0 \forall m$.
Remark 5.51. Think of $\xi_{n}$ as the outcome of a fair game being played. You decide to bet on this game. Let $\Delta_{n}$ be your bet at time $n$; your return from this bet is $\Delta_{n} \xi_{n+1}$, and thus your cumulative return at time $n+1$ is $X_{n+1}=\underline{X}_{n}+\Delta_{n} \xi_{n+1}$.

(1) Adapted:

(2) NTS $E_{n} X_{n+1}=X_{n}$

$$
\begin{aligned}
& \text { Pf: } E_{m} X_{n+1}=E_{n}\left(X_{n}+\Delta_{n} 弓_{n+1}\right) \\
& =E_{n} X_{n}+E_{n}\left(\Delta_{n} \xi_{n+1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =X_{n}+\Delta_{n} E_{n} \xi_{n+1}
\end{aligned}
$$

$$
=x_{n}+\Delta_{n} \bar{弓}_{n} \longleftarrow \text { Doecut rimpldy }
$$

(Will note if we knours I $\xi_{u+1}$ is ind of $8_{n}$. Otmanix cant simplal forther)

Papp: Say $M$ is a img, Lat $\xi_{n+1}=M_{n+1}-M_{n}$.
$\Delta_{n} \rightarrow$ any adapted press.

$$
X_{n+1}=\underline{X_{n}}+\Delta_{n}\left(M_{n+1}-M_{n}\right)=X_{n}+\Delta_{n} \xi_{n+1 .}
$$

Claim: In this care $X$ is a mg.

$$
\text { Pf: } \begin{aligned}
E_{n} X_{n+1} & =E_{n}\left(X_{n}+\Delta_{n}\left(M_{n+1}-M_{n}\right)\right) \\
& =X_{n}+\Delta_{n} E_{n}\left(M_{n+1}-M_{n}\right) \\
& =X_{n} \quad\left(O_{0} \quad E_{n} M_{n+1}=M_{n} \Rightarrow E_{n}\left(M_{n+1}-M_{n}\right)=0\right)
\end{aligned}
$$

### 5.5. Change of measure.

Example 5.52. Consider i.i.d. coin tosses with $\boldsymbol{P}\left(\omega_{n}=1\right)=\underline{\underline{p}}$ and $\boldsymbol{P}\left(\omega_{n}=-1\right)=q_{1}=1-p_{1}$. Let $u, d>0, \underline{r}>-1$. Let $S_{n+1}(\omega)=u S_{n}(\omega)$ if $\omega_{n+1}=1$, and $S_{n+1}(\omega)=S_{n}(\omega)$ if $\omega_{n+1}=1$. Let $D_{n}=(1+r)^{-n}$ be the "discount factor".

Suppose we now invented a new "risk neutral" coin that comes up heads with probability $\tilde{p}_{1}$ and tails with probability $\tilde{q}_{1}=1-\tilde{p}_{1}$.
 $\tilde{\boldsymbol{P}}$ martingale.
Theorem 5.53. Consider a market where $S_{n}$ above models a stock price, and $r$ is the interest rate with $0<d<1+r<u$. The coins land heads and tails with probability $p_{1}$ and $q_{1}$ respectively. If you have a derivative security that pays $V_{N}$ at time $N$, then the arbitrage free price of this security at time $n \leqslant \underline{N}$ is given by

$$
V_{n}=\frac{1}{D_{n}} \tilde{\boldsymbol{E}}_{n}\left(D_{N} V_{N}\right)=\underbrace{(1+r)^{n-N}} \underbrace{\tilde{\boldsymbol{E}}_{n} V_{N}} ;
$$


a forgat $\rightarrow$ weld).
Remark 5.54. Even though the stock price changes according to a coin that flips heads with probability $p_{1}$, the arbitrage free price is computed using conditional expectations using the risk neutral probability. So when computing $\tilde{\boldsymbol{E}}_{n} V_{N}$, we use our new invented "risk neutral" coin that flips heads with probability $\tilde{p}_{1}$ and tails with probability $\tilde{q}_{1}$.

- Let $\underline{p}: \underline{\Omega} \rightarrow[0,1]$ be a probability mass function on $\Omega$, and $\boldsymbol{P}(\underline{A})=\sum_{\omega \in A} p(\omega)$ be the probability measure.
- Let $\tilde{\tilde{p}}: \bar{\Omega} \rightarrow[0,1]$ be another probability mass function, and define a second probability measure $\tilde{\boldsymbol{P}}$ by $\tilde{\boldsymbol{P}}(\underline{A})=\sum_{\omega \in A} \tilde{p}(\omega)$.

Remark 5.56 . When $\Omega$ is finite, $\underline{\boldsymbol{P}}$ and $\underline{\tilde{\boldsymbol{P}}}$ are equivalent if and only if we have $p(\omega)=0 \Longleftrightarrow \tilde{p}(\omega)=0$ for all $\omega \in \Omega$.
We let $\tilde{\boldsymbol{E}}, \tilde{\boldsymbol{E}}_{n}$ denote the expectation and conditional expectations with respect to $\tilde{\boldsymbol{P}}$ respectively.


Work out Example 5.52
Find F of

$(a t c c \cos )$
(news coin)


$$
\text { i.e. } \quad \tilde{E}_{n}\left(D_{n+1} S_{n+1}\right)=D_{n} S_{n}
$$

Lat's computate $\tilde{\mathbb{E}}_{n} S_{n+1}$ :

$$
\text { Let } X_{n+1}(\omega)= \begin{cases}n & \omega_{n+1}=1 \\ d & \omega_{n+1}=-1\end{cases}
$$

Wile $\quad S_{n+1}=X_{n+1} S_{n}$ \& $X_{n+1}$ is $\&_{n+1}$ meas. \& $X_{n+1}$ is ind of $f_{n}$ !

$$
\begin{array}{rlrl}
\Rightarrow \tilde{E}_{n} S_{n+1} & =\tilde{E}_{n}\left(X_{n+1} S_{n}\right) \\
& =S_{n} \tilde{E}_{n} X_{n+1} & & \left(\because S_{n} \text { is } F_{n} \text { mans }\right) \\
& =S_{n}\left({\tilde{E} X_{n+1}}\right) & & \left(\because X_{n+1} \text { is ind of } E_{n}\right)
\end{array}
$$

$$
\begin{aligned}
= & S_{n}\left(\tilde{p}_{1}+\left(1-\tilde{p}_{1}\right) d\right), \\
\Rightarrow \tilde{E}_{n} S_{n+1}= & \left(\tilde{p}_{n}+\left(1-\tilde{p}_{1}\right) d\right) \cdot S_{n}
\end{aligned}
$$

Wat $D_{n} S_{n}$ to be a $\bar{p} \mathrm{mg}$.

$$
\begin{aligned}
& \text { Want } \tilde{E}_{n}\left(D_{n+1} S_{n+1}\right)=D_{n} S_{n} \\
& \Leftrightarrow \widetilde{E}_{n}\left((1+\tau)^{-(x+1)} S_{n+1}\right)=(1+\tau)^{-n} S_{n} .
\end{aligned}
$$

$$
\begin{aligned}
& \Leftrightarrow \tilde{E}_{n} S_{n+1}=(1+r) S_{n} \\
& \Leftrightarrow\left(\tilde{\phi}_{1} n+\left(1-\tilde{p}_{1}\right) d\right) S_{n}=(1+r) S_{n} \\
& \Leftrightarrow \tilde{\phi}_{n}+\left(1-\tilde{\phi}_{1}\right) d=1+r \rightarrow
\end{aligned}
$$

