Lecture 8 (9/17). Please enable your video if you can. $E_n X$ is the sign RV grach that $E_n X = could exp of X$ $= i (f) \in X$ hast time: X -> R.V. EnX is & meas - \mathcal{L} (2) $\forall A \in \mathcal{F}_{m}$, Z $\mathcal{E}_{m} X(\omega) \phi(\omega) = \sum_{\omega \in A} \mathcal{E}_{A} X(\omega) \phi(\omega)$ $\omega \in A - \omega \in A$

Theorem 5.31. (1) If X, Y are two random variables and
$$\alpha \in \mathbb{R}$$
, then $E_n(X + \alpha Y) = E_n X + \alpha E_n Y$. (On homework).
(2) (Towar-property) If $m \leq n$, then $E_m(E_n X) = E_m X$.
(3) If X is F_n measurable, and Y is any random variable, then $E_n(XY) = XE_nY$.
(3) If X is F_n measurable, and Y is any random variable, then $E_n(XY) = XE_nY$.
(4) If X is F_n measurable, and Y is any random variable, then $E_n(XY) = XE_nY$.
(5) If X is F_n measurable, and Y is any random variable, then $E_n(XY) = XE_nY$.
(6) If X is $F_n - measurable, and Y is any random variable, then $E_n(XY) = XE_nY$.
(7) If X is F_n measurable, and Y is any random variable, then $E_n(XY) = XE_nY$.
(8) If X is F_n is $E_n - measurable, and Y is any random variable, then $E_n(XY) = XE_nY$.
(9) If X is $E_n - measurable, and Y is $E_n - measurable, and Y is E_n - measurable, and Y is $E_n - measurable, and Y is E_n - measurable, and Y is $E_n - measurable, and Y is E_n - measurable, and Y is $E_n - measurable, and Y is a E_n - measurable, and Y is $E_n - measurable, and Y is E_n - measurable, and Y is $E_n - measurable, and Y is E_n - measurable, and Y is $E_n - measurable, and Y is E_n - measurable, and Y is $E_n - measurable, and Y is E_n - measurable, and Y is $E_n - measurable, and Y is E_n - measurable, and Y is a measurable, and Y is $E_n - measurable, and Y is E_n - measurable, and Y is $E_n - measurable, and Y is E_n - measurable, and Y is $E_n - measurable, and Y is A = Measurable, and Y is $E_n - measurable, and Y is A = Measurable, and Y = Measur$$$$$$$$$$$$$$$$

het En, - and = Raye of Max Wone A = U EX= x. 30 A (digj view) $\sum_{\omega \in A} \chi(\omega) = \sum_{m} \chi(\omega) \phi(\omega) = \sum_{i=1}^{k} \sum_{\omega \in A} \chi(\omega) = \chi(\omega) \phi(\omega) \phi(\omega)$ $= \sum_{n=1}^{k} \sum_{n=1}^{k} (x_{n}) f_{n} (w) f(w)$ 1-1 GEANZX=7, 3. $= \sum_{i=1}^{2} \frac{7}{\omega} \sum_{\omega \in A \cap \frac{2}{3}} E_{\omega} Y(\omega) \phi(\omega),$

 $= \sum_{i=1}^{k} \chi_{i} \sum_{\omega \in A \cap \{X = X_{i}\}}^{*} \chi(\omega) f(\omega) \quad (:: A \cap \{X = X_{i}\})$ En meas (° × X is En-meas). $= \sum_{i=1}^{k} \sum_{i=1}^{i} \frac{\chi(\omega)}{\chi(\omega)} + (\omega)$ w CAN X= 7: 3 [2] $= \sum_{\substack{\omega \in A}} \chi(\omega) \chi(\omega) \varphi(\omega)$ QED.

Theorem 5.32. If X is independent of \mathcal{F}_n then $\mathbf{E}_n X = \mathbf{E} X$. (i.e. for every AEEm & BER, the events A& B are ind) (=) X is ind of En, if Range (X) = Za1, - aks $k \neq i \in \{1, -k\} \quad \forall A \in \{3, A \quad A \quad A \quad A \quad X = 1; \\ \begin{cases} n \\ n \end{cases} \end{pmatrix}$ Ro Assure X ind of Sn. $E_{M}\chi = E\chi$ NTS i.e. NTS @ EX is En mens -

 $Z X(\omega) \neq (\omega) = Z \sqrt{Z}$ $(\chi(\omega))$ i=1 we Angx=7.3 WEA $= \sum_{i=1}^{2} \pi_i \left(\sum_{\omega \in A \cap \{X_i = \pi_i\}} \psi(\omega) \right)$ 5 Z 7. 11 $A \cap \{\chi = \pi; \chi'\}$ $\mathcal{P}_{i} \mathcal{P}(\mathcal{A}) \mathcal{P}(\mathcal{X} = \pi_{i}) \qquad (\overset{\circ}{\ldots} \mathcal{X} : s \text{ inol } q \mathcal{E}_{n} \\ \Rightarrow \mathcal{A} \mathcal{L} \mathcal{Z} \mathcal{X} = \pi_{i}^{2} \mathcal{O}_{i} \mathcal{P}_{i}$ 14

 $= P(A) \sum_{i=1}^{k} a_i P(X = a_i)$

 $= P(A) \cdot EX = Z EX f(\omega) \cdot [OED]$ wea Intulion so for & Compiting En S & mere things -> leave done II Toutulion so for & Compiting En S & mere things -> average

Theorem 5.33 (Independence lemma). If X is independent of
$$\mathcal{F}_n$$
 and Y is \mathcal{F}_n -measurable, and $f: \mathbb{R} \to \mathbb{R}$ is a function then
 $E_n f(X, Y) = \sum_{i=1}^m f(x_i, Y) P(X = x_i), \quad \text{where } \{x_1, \dots, x_m\} = X(\Omega).$

$$Raye(x) = \{x_1, \dots, n_m\}, \quad y \in R \quad (a \text{ neal } \#).$$

$$E = \{x_1, \dots, n_m\}, \quad y \in R \quad (a \text{ neal } \#).$$

$$E = \{x_1, \dots, n_m\}, \quad z \in \{a_1, p_1\}, \quad P(x = n_1).$$

5.4. Martingales.

Definition 5.34. A stochastic process is a collection of random variables X_0, X_1, \ldots, X_N . **Definition 5.35.** A stochastic process is adapted if X_n is \mathcal{F}_n -measurable for all n. (Non-anticipating.) **Question 5.36.** Is $X_n(\omega) = \sum_{i \leq n} \omega_i$ adapted? **Question 5.37.** Is $X_n(\omega) = \omega_n$ adapted? Is $X_n(\omega) = 15$ adapted? Is $X_n(\omega) = \omega_{15}$ adapted? Is $X_n(\omega) = \omega_{N-i}$ adapted? *Remark 5.38.* We will always model the price of assets by adapted processes. We will also only consider trading strategies which are adapted.

$$\begin{split} & (\omega) = \sum_{i=1}^{n} \omega_{i} \qquad (\omega_{i} \in \{\pm, 1\}) \\ & (\sum_{i=1}^{n} \sum_{j=1}^{n} \omega_{i}) \qquad (\omega_{i} \in \{\pm, 1\}) \\ & (\sum_{i=1}^{n} \sum_{j=1}^{n} \omega_{i}) \qquad (\sum_{i=1}^{n} \omega_{i})$$

Example 5.39 (Money market). Let $Y_0 = Y_0(\omega) = a \in \mathbb{R}$. Define $Y_{n+1} = (1+r)Y_n$. (Here r is the interest rate.)

Example 5.40. Suppose
$$\Omega = \{\pm 1\}^N \cong \{H, T\}^N \cong \{1, 2\}^N$$
. Let $S_0 = a \in \mathbb{R}$. Define $S_{n+1}(\omega) = \begin{cases} uS_n(\omega) & \omega_{n+1} = 1, \\ dS_n(\omega) & \omega_{n+1} = -1. \end{cases}$

Is S_n adapted? (Used to model stock price in the multi-period Binomial model.)

Definition 5.41. We say an adapted process M_n is a martingale if $E_n M_{n+1} = M_n$. (Recall $E_n Y = E(Y | \mathcal{F}_n)$.) *Remark* 5.42. Intuition: A martingale is a "fair game".

Example 5.43 (Unbiased random walk). If X_1, \ldots, X_N are i.i.d. and mean zero, then $S_n = \sum_{k=1}^n X_k$ is a martingale.