

 $F_{m} = all ends desembalie by pully put a coins$ $= <math>\frac{2}{4} \subseteq \mathcal{L} \mid A = \bigcup \prod_{n} (\omega^{i}) \text{ for some } k \in \mathbb{N}$ $\stackrel{k}{\rightarrow} \underset{i}{\longrightarrow} \underset{$ Recall o $\Pi_{m}(\omega) = \{ \omega' \in \mathcal{L} \mid \omega_{i} = \omega_{i} \quad \forall i \in \mathcal{M} \}$ $W = \chi_{ellows}$ highert pall. $\Pi_2(\omega) = pink$ high ighted thys.

5.3. Conditional expectation.

Definition 5.23. Let X be a random variable, and $n \leq N$. We define $E(X | \mathcal{F}_n) = E_n X$ to be the random variable given by

$$E_n X(\omega) = \frac{\sum_{\omega' \in \Pi_n(\omega)} p(\omega') X(\omega')}{\sum_{\omega' \in \Pi_n(\omega)} p(\omega')}, \quad \text{where} \quad \Pi_n(\omega) = \{\omega' \in \Omega \mid \omega_1' = \omega_1, \dots, \omega_n' = \omega_n\}$$

Remark 5.24. $E_n X$ is the "best approximation" of X given only the first n coin tosses.

Remark 5.25. The above formula does not generalize well to infinite probability spaces. We will develop a definition that does generalize; after we have that definition we will never ever use this formula.

$$E_{n} X(\omega) = A_{wze} a_{z} X \quad \text{on the event } \Pi_{n}(\omega)$$

$$= \frac{1}{P(\Pi_{n}(\omega))} \sum_{\omega' \in \Pi_{n}(\omega)} X(\omega') f(\omega').$$

Proposition 5.26. The conditional expectation
$$E_n X$$
 defined by the above formula satisfies the following two properties:
(I) $E_n X$ is an \mathcal{F}_n -measurable random variable.
(2) For every $A \in \mathcal{F}_n$, $\sum_{\omega \in A} E_n X(\omega) p(\omega) = \sum_{\omega \in A} X(\omega) p(\omega)$.
Note (2) A by $e_{\mathcal{F}_n} X$ on any \mathcal{F}_n -mease event A
 $= Awge$ of X is an \mathcal{F}_n -mease event A .
Note: $A \in \mathcal{F}_n$. Anyle of $\mathcal{F}_n X$ on $A = \frac{1}{\mathcal{P}(A)} \sum_{\omega' \in A} \mathcal{F}_n X(\omega') \mathcal{P}(\omega')$,
 W
 $Awge$ of X on $A = \frac{1}{\mathcal{P}(A)} \sum_{\omega' \in A} X(\omega') \mathcal{P}(\omega')$

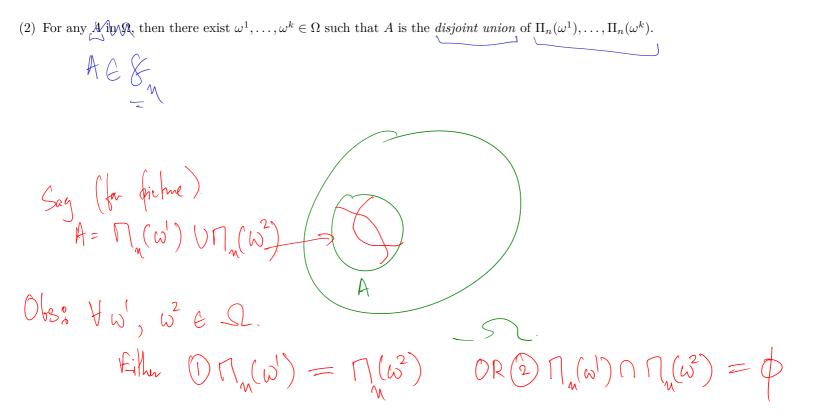
Play D: NTS EnX is Fa meas. i.e. NTS: If $\mathcal{W} \in SL$ is such that $\mathcal{W}_{i} = \mathcal{W}_{i}$ then $E_{M}X(\mathcal{W}) = E_{M}X(\mathcal{W})$ Pk: Note: If is as above $\Pi_{n}(\omega) = \Pi_{n}(\omega)$ Hence $E_n X(\omega) = \frac{1}{P(\Pi_n(\omega))} \frac{1}{\omega' \in \Pi_n(\omega)} X(\omega') \phi(\omega')$

 $= \frac{1}{P(\Pi_{n}(\omega))} \frac{1}{\omega' \in \Pi_{n}(\omega)} X(\omega') \not\models (\omega') = F_{n}X(\omega)$ QED.

Proof of (2):
(1) For any
$$\omega \in \Omega$$
, $\sum_{\omega' \in \Pi_{n}(\omega)} E_{n}X(\omega')p(\omega') = \sum_{\omega' \in \Pi_{n}(\omega)} X(\omega')p(\omega')$
Proof of (2):
(1) For any $\omega \in \Omega$, $\sum_{\omega' \in \Pi_{n}(\omega)} E_{n}X(\omega')p(\omega') = \sum_{\omega' \in \Pi_{n}(\omega)} X(\omega')p(\omega')$.
Proof of (2):
(1) For any $\omega \in \Omega$, $\sum_{\omega' \in \Pi_{n}(\omega)} E_{n}X(\omega')p(\omega') = \sum_{\omega' \in \Pi_{n}(\omega)} X(\omega')p(\omega')$.
Note $\forall \omega' \in \Pi_{n}(\omega)$, $E_{n}X(\omega') = E_{n}X(\omega)$ (by fact 1).
 $\Rightarrow \angle H \leq = \sum_{\omega' \in \Pi_{n}(\omega)} E_{n}X(\omega')p(\omega')$

 $= \sum_{\omega' \in \Pi_{m}(\omega)}^{\prime} E_{m} X(\omega) \phi(\omega') = E_{m} X(\omega) P(\Pi_{m}(\omega))$

by final for $E_{M}X \sum_{n} \chi(\omega) \phi(\omega') = RHS$ OED $w' \in \Pi_{n}(w)$



Proposition 5.27 (Uniqueness). If \overline{Y} and \overline{Z} are two \mathcal{F}_n -measurable random variables such that $\sum_{\omega \in A} Y(\omega)p(\omega) = \sum_{\omega \in A} Z(\omega)p(\omega)$ for every $A \in \mathcal{F}_n$, then we must have $\mathbf{P}(Y = Z) = 1$.

IOU Proaf (Next time).

Definition 5.28. Let X be a random variable, and $n \leq N$. We define the *conditional expectation of* X given \mathcal{F}_n , denoted by $E_n X$, or $E(X | \mathcal{F}_n)$, to be the unique random variable such that:

- (1) $E_n X$ is a \mathcal{F}_n -measurable random variable. (2) For every $A \subseteq \mathcal{F}_n$, we have $\sum_{\omega \in A} E_n X(\omega) p(\omega) = \sum_{\omega \in A} X(\omega) p(\omega)$.

Remark 5.29. This is the definition that generalizes to the continuous case. All properties we develop on conditional expectations will only use the above definition, and not the explicit formula.