Please enathe vider if posenble.
Office tlonns tolky, End at 5:00 PM.
$\stackrel{\imath}{\Omega} \rightarrow\{-1,1\}^{N} \quad$ (Sample afoul $\rightarrow N$ coin torses)
$\omega \in \Omega \quad \omega=\left(\omega_{1}, \cdots \omega_{N}\right) \rightarrow \omega_{i} \in\{-1,1\} \rightarrow$ andene of ith conntiss

Vismaize, as tmes $\omega=(-1,1,1) \in \Omega \quad(N=3)$

5.2. Filtrations.

- Let $N \in \mathbb{N}, d_{1}, \ldots, d_{N} \in \mathbb{N}, \Omega=\left\{1, \ldots, d_{1}\right\} \times\left\{1, \ldots, d_{n}\right\} \times \cdots \times\left\{1, \ldots, d_{N}\right\}$.
- That is $\Omega=\left\{\omega \mid \omega=\left(\omega_{1}, \ldots, \omega_{N}\right), \omega_{i} \in\left\{1, \ldots, d_{i}\right\}\right\}$.
- $d_{n}=2$ for all n corresponds to flipping a two sided coin at every time step.

Definition 5.18. We define a filtration on Ω as follows:
$\triangleright \mathcal{F}_{0}=\{\emptyset, \Omega\}$.
$\triangleright \mathcal{F}_{1}=$ all events that can be described by only the first coin toss (die roll). E.g. $A=\left\{\omega \mid \omega_{1}=H\right\} \in \mathcal{F}_{1}$.
$\triangleright \mathcal{F}_{n}=$ all events that can be described by only the first n coin tosses.
More precisely, given $\omega=\left(\omega_{1}, \ldots, \omega_{N}\right) \in \Omega$ and $n \in\{0, \ldots, N\}$ define

$$
\Pi_{n}(\omega)=\left\{\omega^{\prime} \in \Omega \mid \omega^{\prime}=\left(\omega_{1}^{\prime}, \ldots, \omega_{N}^{\prime}\right) \text { and } \omega_{i}^{\prime}=\omega_{i} \text { for all } i \leqslant n\right\}
$$

Now \mathcal{F}_{n} is defined by $\mathcal{F}_{n} \stackrel{\text { def }}{=}\left\{A \subseteq \Omega \mid A=\bigcup_{i=1}^{k} \Pi_{n}\left(\omega^{i}\right), \omega^{1}, \ldots, \omega^{k} \in \Omega\right\}$
Remark 5.19. Note $\{\emptyset, \Omega\}=\mathcal{F}_{0} \subseteq \mathcal{F}_{1} \subseteq \cdots \subseteq \mathcal{F}_{N}=\mathcal{P}(\Omega)$.
Question 5.20. Let $\Omega=\{H, T\}^{3} \cong\{1,2\}^{3}$. What are $\mathcal{F}_{0}, \ldots, \mathcal{F}_{3}$?

$$
\begin{aligned}
& s \Omega=\{-1,1\} \\
& \begin{array}{l}
\left(\begin{array}{l}
-1
\end{array} \rightarrow\right. \text { tails } \\
+1 \rightarrow \text { teds })
\end{array} \\
& N=3
\end{aligned}
$$

$C_{\text {smple }} f_{0}=\{\phi, \Omega\}$

$$
\begin{gathered}
f_{1}=\{\phi, \Omega, \quad\{(1,1,1),(1,1,-1),(1,-1,1),(1,-1,-1)\} \\
\{(-1,1,1),(-1,1,-1),(-1,-1,1),(-1,-1,-1)\}\} \\
f_{2}=\left\{\phi, \Omega,\{(1,1,1),(1,1,-1)\}, \Pi_{2}((1,1,1)) .\right. \\
\\
\{(1,1,1),(1,1,-1),(1,-1,1),(1,-1,-1)\}\}
\end{gathered}
$$

\& keep going $\}$.

$$
\begin{aligned}
& \Pi_{2}(1,1,1)=\{(1,1,-1),(1,1,1)\} \\
& \Pi_{2}((1,-1,1))=\{(1,-1,1),(1,-1,-1)\}
\end{aligned}
$$

Definition 5.21. Let $n \in\{0, \ldots, N\}$. We say a random variable X is \mathcal{F}_{n}-measurable if $X(\omega)$ only depends on $\omega_{1}, \ldots, \omega_{n}$.
\triangleright Equivalently, for any $B \subseteq \mathbb{R}$, the event $\{X \in B\} \in\left(\mathcal{F}_{n}\right.$.
\triangleright Equivalently, if $\omega_{\omega^{\prime}} \in \underbrace{\Pi_{n}(\omega)}$ then $\underline{X\left(\omega^{\prime}\right)}=\underline{X(\omega)}$.
Question 5.22. Let $X(\omega) \stackrel{\text { def }}{=} \underbrace{\omega_{1}-10 \omega_{2}}$. For what n is \mathcal{F}_{n}-measurable?

$$
\begin{aligned}
& \{X \in B\}=\{\omega \in \Omega \mid X(\omega) \in B\} \\
\Rightarrow & X(0)=\omega_{1}-10 \omega_{2} \text { is } f_{x} \text { mess } \forall n \geqslant 2
\end{aligned}
$$

In fin ane: Always repine trading strategies to be abated" X is 8_{0} i.e. $\Delta_{n}=$ \# shave of stake in your Pf of time x.
\qquad
Gand Prof $\rightarrow P(A \mid B)=\frac{P(A \cap B)}{P(B)}$
5.3. Conditional expectation.

Definition 5.23. Let X be a random variable, and $n \leqslant N$. We define $\boldsymbol{E}\left(X \mid \mathcal{F}_{n}\right)=\boldsymbol{E}_{n} X$ to be the random variable given by

$$
\left(E_{n} X\right)(\omega)=\angle \boldsymbol{E}_{n} X\left({ }_{=1}(\omega)=\frac{\sum_{\omega^{\prime} \in \Pi_{n}(\omega)} p\left(\omega^{\prime}\right) \underline{X\left(\omega^{\prime}\right)}}{\sum_{\omega^{\prime} \in \Pi_{n}(\omega)} p\left(\omega^{\prime}\right)}, \quad \text { where } \quad \Pi_{n}(\omega)\right]=\left\{\omega^{\prime} \in \Omega \mid \underline{\left.\omega_{1}^{\prime}=\omega_{1}, \ldots, \omega_{n}^{\prime}=\omega_{n}\right\}}\right.
$$

Remark 5.24. $\boldsymbol{E}_{n} X$ is the "best approximation" of X given only the first n coin tosses.
Remark 5.25. The above formula does not generalize well to infinite probability spaces. We will develop a definition that does generalize; after we have that definition we will never ever ever use this formula.

$$
\begin{aligned}
& \text { ole } E_{n} X(\omega)=\text { lng of } X \text { honor the east } \Pi_{m}(\omega)=\frac{1}{P(\pi(\omega))} \sum_{\bar{\in} \in \Pi_{\mu}(\omega)} p(\omega) X\left(\omega^{\prime}\right)
\end{aligned}
$$

Proposition 5.26. The conditional expectation $\boldsymbol{E}_{n} X$ defined by the above formula satisfies the following two properties:
(1) $\boldsymbol{E}_{n} X$ is an \mathcal{F}_{n}-measurable random variable.
(2) For every $A \in \mathcal{F}_{n}, \sum \boldsymbol{E}_{n} X(\omega) p(\omega)=\sum$
(2) For every $A \in \underline{\mathcal{F}}_{n}, \sum_{\omega \in A} \boldsymbol{E}_{n} X(\omega) p(\omega)=\sum_{\omega \in A} X(\omega) p(\omega)$.

Chase $A=\Omega$. Then $E X=\sum_{\omega \in A} X(\omega) \gamma(\omega)$
By (2) alow have $E X=\sum_{\omega \in A} E_{M} X(\omega) p(\omega)=E(E X)$

$$
\Rightarrow E\left(E_{n} x\right)=E x
$$

