Please enatle videos if pocsible!

5. A quick introduction to probability

This is just a quick reminder, and specific to our situation (coin toss spaces). You should have already taken a probability course, or be co-enrolled in one. The only thing we will cover in any detail is conditional expectation.

Let $N \in \mathbb{N}$ be large (typically the maturity time of financial securities).
Definition 5.1. The sample space is the set $\Omega=\left\{\left(\omega_{1}, \ldots, \omega_{N}\right) \mid\right.$ each ω_{i} represents the outcome of a coin toss (or die roll). $\}$
\triangleright E.g. $\omega_{i} \in\{H, T\}$, or $\omega_{i} \in\{ \pm 1\}$.
\triangleright Coins / dice don't have to be identical: Pick $M_{1}, \underline{M_{2}}, \ldots, \in \mathbb{N}$, and can require $\omega_{i} \in\left\{\underline{1}, \ldots, M_{i}\right\}$.
\triangleright Usually in probability the sample space is simply a set; however, for our purpose it is more convenient to consider "coin toss spaces" as we defined above.

Definition 5.2. A sample point is a point $\omega=\left(\omega_{1}, \ldots, \omega_{N}\right) \in \Omega \in \Omega$.
Definition 5.3. A probability mass function, is a function $p: \underline{\Omega} \rightarrow[0,1]$ such that $\sum_{\omega \in \Omega} p(\omega)=1$.
Definition 5.4. An event is a subset of $\underline{\Sigma}$. Define $\boldsymbol{P}\left(\underline{\underline{A})}=\sum_{\omega \in A} \underline{\underline{p(\omega)}}\right.$.

Visnalize Ω for coin tosses: $\{ \pm \pm$ or $\{H, T\}$.
N iid coims $\omega_{i} \in\{1,2\}$ *i $\in\{1, \ldots N\}$
imdepardut, iduntically distartatatel.

5.1. Random Variables and Independence.

Definition 5.5. A random variable is a function $X: \Omega \rightarrow \underline{\underline{R}}$
Question 5.6. What is the random variable corresponding to the outcome of the $n^{\text {th }}$ coin toss?

$$
\begin{aligned}
& \Omega=\left\{l \omega=\left(\omega_{1}, \cdots \omega_{\underline{N}}\right)\right. \\
& \left.\omega_{i \in}\{1,2\}\right\} \\
& \text { 个 } 2 \text { sided coins. } \\
& X_{n}(\omega)=\text { RVV comesparding to the } u^{\text {th }} \operatorname{coin} \text { toss. } \\
& =\omega_{n} \quad\left(\text { where } \omega=\left(\omega_{1}, \omega_{2}, \cdots \omega_{N}\right)\right.
\end{aligned}
$$

Definition 5.7. The expectation of a random variable X is $\boldsymbol{E} X=\sum X(\omega) p(\omega)$.
Remark 5.8. Note if Range $(X)=\left\{x_{1}, \ldots, x_{n}\right\}$, then $\left.\boldsymbol{E} X=\sum X(\omega) p(\omega)=\sum_{1}^{n} x_{i} \boldsymbol{P}, X=x_{i}\right)$,
Definition 5.9. The variance of a random variable is $\operatorname{Var}(X)=\boldsymbol{E}(\underline{X}-\boldsymbol{E} X)^{2}$
Remark 5.10. Note $\operatorname{Var}(X)=\boldsymbol{E} X^{2}-(\boldsymbol{E} X)^{2}$.

$$
\left\{X=x_{0}\right\}=\left\{\omega \in \Omega \mid X(\omega)=x_{i}\right\}
$$

Nadulim conation $E X^{2}$ ALNAY mean $E\left(X^{2}\right)$ and NQT $(E X)^{2}$

Definition 5.11. Two events are independent if $P(A \cap B)=P(A) P(B)$. $P(A \mid B)=P(A)$
Definition 5.12. The events $A_{1}, \ldots, A_{\frac{n}{}}$ are independent if for any sub-collection $A_{i_{1}}, \ldots, A_{i_{k}}$ we have

$$
\overline{\boldsymbol{P}}\left(A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}\right)=\boldsymbol{P}\left(A_{i_{1}}\right) \boldsymbol{P}\left(A_{i_{2}}\right) \cdots \boldsymbol{P}\left(A_{i_{k}}\right)
$$

Remark 5.13. When $n>2$, it is not enough to only require $\boldsymbol{P}\left(A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right)=\boldsymbol{P}\left(A_{1}\right) \boldsymbol{P}\left(A_{2}\right) \cdots \boldsymbol{P}\left(A_{n}\right)$
LI Eg: A_{1}, A_{2}, A_{3} ane ind of
(1) $P\left(A_{1} \cap A_{2} \cap A_{3}\right)=P\left(A_{1}\right) P\left(A_{2}\right) P\left(A_{3}\right)$

$$
\& P\left(A_{1} \cap A_{2}\right)=P\left(A_{1}\right) P\left(A_{2}\right) \& P\left(A_{1} \cap A_{3}\right)=P\left(A_{1}\right) P\left(A_{3}\right)
$$

\& $P\left(A_{2} \cap A_{3}\right)=P\left(A_{2}\right) P\left(A_{3}\right)$

Definition 5.14. Two random variables are independent if $\boldsymbol{P}(\underline{X}=x, \underline{Y}=y)=\boldsymbol{P}(X=\underline{x}) \boldsymbol{P}(\underline{Y}=\underline{y})$ for all $x, \underline{y} \in \mathbb{R}$.
Definition 5.15. The random variables X_{1}, \ldots, X_{n} are independent if for all $x_{1}, \ldots, x_{n} \in \mathbb{R}$ we have

$$
\boldsymbol{P}\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right)=\boldsymbol{P}\left(X_{1}=x_{1}\right) \boldsymbol{P}\left(X_{2}=x_{2}\right) \cdots \boldsymbol{P}\left(X_{n}=x_{n}\right) .
$$

Remark 5.16. Independent random variables are uncorrelated, but not vice versa.
Proposition 5.17. The coin tosses in our setup are all independent, if and only if, there exists functions p_{1}, \ldots, p_{N} such that

$$
p(\omega)=p_{1}\left(\omega_{1}\right) p_{2}\left(\omega_{2}\right) \cdots p_{N}\left(\omega_{N}\right)
$$

\rightarrow Notation
connection:
Cantal
lotus

small
letter

value they
take on.
$\rightarrow P$ f: $S_{i t}$
$X_{n}(\omega)=$
ω

of
wi
coin toss).
Coin tosses ane imolup
\Leftrightarrow The R.V's $X_{1}^{\prime}, \ldots X_{n}$ are impale.
$\Leftrightarrow \forall \omega_{1}, \omega_{2},-\omega_{N} \in \mathbb{R}$ we have

5.2. Filtrations.

- Let $\underline{N} \in \mathbb{N}, d_{1}, \ldots, d_{N} \in \mathbb{N}, \Omega=\left\{1, \ldots, d_{1}\right\} \times\left\{1, \ldots, d_{\text {元 }}\right\} \times \cdots \times\left\{1, \ldots, d_{N}\right\}$.
- That is $\left.\overparen{\Omega}=\left\{\omega \mid \omega=\overline{(} \omega_{1}, \ldots, \omega_{N}\right), \omega_{i} \in\left\{1, \ldots, \overline{d_{i}}\right\}\right\}$.
- $d_{n}=2$ for all n corresponds to flipping a two sided coin at every time step.

Definition 5.18. We define a filtration on Ω as follows:
$\triangleright \frac{\mathcal{F}_{0}}{\overline{\bar{F}}}=\{\emptyset, \Omega\}$. \leftrightharpoons Info you have before any comm figs
$\triangleright \overline{\overline{\mathcal{F}_{1}}}=$ all events that can be described by only the first coin toss (die roll). E.g. $\underbrace{A=\left\{\omega \mid \omega_{1}=H\right\} \in \mathcal{F}_{1}}$.
$\triangleright \overline{\mathcal{F}_{n}}=$ all events that can be described by only the first n coin tosses.
More precisely, given $\underset{\underline{\omega}}{ }=\left(\underline{\omega}_{1}, \ldots, \underline{\omega_{N}}\right) \in \underline{\Omega}$ and $\underline{\underline{n}} \in\{\underline{0}, \ldots, \underline{N}\}$ define

$$
\begin{aligned}
& \mathbb{\Pi}_{n}(\underline{\omega})=\left\{{\underset{\omega}{ }}^{\prime} \in \Omega \mid \underline{\omega}^{\prime}=\left(\underline{\omega}_{1}^{\prime}, \ldots, \underline{\omega}_{N}^{\prime}\right)\right. \\
& \left.\Omega \mid A=\bigcup_{i=1}^{k} \prod_{n}\left(\omega^{i}\right), \underline{\omega}^{1}, \ldots, \omega^{k} \in \underline{\Omega}\right\}
\end{aligned}
$$

Remark 5.19. Note $\{\emptyset, \Omega\}=\mathcal{F}_{0} \subseteq \mathcal{F}_{1} \subseteq \cdots \subseteq \mathcal{F}_{N}=\mathcal{P}(\Omega)$.
Question 5.20. Let $\Omega=\{H, T\}^{3} \cong\{1,2\}^{3}$. What are $\mathcal{F}_{0}, \ldots, \mathcal{F}_{3}$?

Definition 5.21. Let $n \in\{0, \ldots, N\}$. We say a random variable X is F_{n}-measurable if $X(\omega)$ only depends on $\omega_{1}, \ldots, \omega_{n}$ \triangleright Equivalently, for any $B \subseteq \mathbb{R}$, the event $\{X \in B\} \in \mathcal{F}_{n}$.
\triangleright Equivalently, if $\omega^{\prime} \in \Pi_{n}(\omega)$ then $X\left(\omega^{\prime}\right)=X(\omega)$.
Question 5.22. Let $X(\omega) \stackrel{\text { def }}{=} \omega_{1}-10 \omega_{2}$. For what n is \mathcal{F}_{n}-measurable?

