

5. A quick introduction to probability

This is just a quick reminder, and specific to our situation (coin toss spaces). You should have already taken a probability course, or <u>be co-enrolled</u> in one. The only thing we will cover in any detail is conditional expectation.

Let $N \in \mathbb{N}$ be large (typically the maturity time of financial securities).

Definition 5.1. The sample space is the set $\Omega = \{(\omega_1, \ldots, \omega_N) \mid \text{each } \omega_i \text{ represents the outcome of a coin toss (or die roll).}\}$

- \triangleright E.g. $\omega_i \in \{H, T\}$, or $\omega_i \in \{\pm 1\}$.
- ▷ Coins / dice don't have to be identical: Pick $M_1, M_2, \ldots, \in \mathbb{N}$, and can require $\omega_i \in \{1, \ldots, M_i\}$.
- ▷ Usually in probability the *sample space* is simply a set; however, for our purposes it is more convenient to consider "coin toss spaces" as we defined above.
- **Definition 5.2.** A sample point is a point $\omega = (\omega_1, \dots, \omega_N) \in \Omega \in \Omega$. **Definition 5.3.** A probability mass function is a function $p: \Omega \to [0, 1]$ such that $\sum_{\omega \in \Omega} p(\omega) = 1$. **Definition 5.4.** An event is a subset of Ω . Define $P(\underline{A}) = \sum_{\omega \in A} p(\omega)$.

Viendize SZ for coin tosses: $\{21, 3, 01, 24, 7\}$. N (iid) coins $w_2 \in \{2, 2\}$ $\forall i \in \{1, -, N\}$ indeprodut, identically distributed. Son N = 3. $\omega \in \Omega$. $\omega = (1, 2, 1)$ coin 1 flips 1. =(2,1,2)Com 1 / 1 2.

5.1. Random Variables and Independence.

Definition 5.5. A random variable is a function $X: \Omega \to \mathbb{R}$.

Question 5.6. What is the random variable corresponding to the outcome of the n^{th} coin toss?

$$\begin{split} \mathcal{L} &= \left\{ \begin{split} & \mathcal{U} = \left(\omega_{1}, \dots, \omega_{N} \right) & \bigcup_{i} \mathcal{E} \in \{1, 2\} \\ & \mathcal{U} \\ & \mathcal{L} \\ & \mathcal$$

Definition 5.7. The expectation of a random variable X is $EX = \sum X(\omega)p(\omega)$. Remark 5.8. Note if Range $(X) = \{x_1, \ldots, x_n\}$, then $\mathbf{E}X = \sum X(\omega)p(\omega) = \sum_{i=1}^n x_i \mathbf{P}(X = x_i)$. **Definition 5.9.** The variance of a random variable is $\operatorname{Var}(X) = E(\underline{X} - \underline{E}X)^2$ Remark 5.10. Note $\operatorname{Var}(X) = EX^2 - (EX)^2$. $\{\chi = \chi_{0} = \{\omega \in \Omega \mid \chi(\omega) = \chi_{0} \}$ Notation convition EX^2 ALWAKS mean $E(X^2)$ and NOT (EX)

Definition 5.11. Two events are independent if $P(A \cap B) = P(A)P(B)$. $P(A \mid B) = P(A)$ **Definition 5.12.** The events A_1, \ldots, A_n are independent if for any sub-collection A_{i_1}, \ldots, A_{i_k} we have $\boldsymbol{P}(A_{i_1} \cap A_{i_2} \cap \cdots \cap A_{i_k}) = \boldsymbol{P}(A_{i_1})\boldsymbol{P}(A_{i_2}) \cdots \boldsymbol{P}(A_{i_k}).$ Remark 5.13. When n > 2, it is not enough to only require $P(A_1 \cap A_2 \cap \cdots \cap A_n) = P(A_1)P(A_2)\cdots P(A_n)$ $f = F(A_1, A_2, A_3) \quad \text{are ind} \quad f = F(A_1, A_2, A_3) = F(A_1)F(A_1)F(A_3)$ $\mathcal{L} P(A_1 \cap A_2) = P(A_1)P(A_2) - \mathcal{L} P(A_1 \cap A_3) = P(A_1)P(A_3)$ \mathcal{L} $P(A_2 \cap A_2) = P(A_2) P(A_3)$

Definition 5.14. Two random variables are independent if P(X = x, Y = y) = P(X = x)P(Y = y) for all $x, y \in \mathbb{R}$. **Definition 5.15.** The random variables X_1, \ldots, X_n are independent if for all $x_1, \ldots, x_n \in \mathbb{R}$ we have $P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n) = P(X_1 = x_1)P(X_2 = x_2) \cdots P(X_n = x_n).$ Remark 5.16. Independent random variables are uncorrelated, but not vice versa. **Proposition 5.17.** The coin tosses in our setup are all independent, if and only if, there exists functions p_1, \ldots, p_N such that $p(\omega) = p_1(\omega_1)p_2(\omega_2)\cdots p_N(\omega_N)$ B Notation conversion: Capital bottons -> RV's small letters -> values they take on. $\square P = Set X_n(w) = w_n$ (outcans of with cointoss). Coin tosses are indup

A R.V's X, --- Xn ane indep. $(=) \forall \omega_1, \omega_2, \dots, \omega_N \in \mathbb{R}$ be have $P\left(X_{1}=\omega_{1} & X_{2}=\omega_{2} & \cdots & X_{n}=\omega_{n}\right) = P\left(X_{1}=\omega_{1}\right) P\left(X_{2}=\omega_{2}\right) \cdots$ $\left(\left\{\left(\omega_{1}, \omega_{2}, \dots, \omega_{N}\right)\right\}\right)$ call this $f_1(\omega_1)$ call this $f_0(\omega_N)$ w. $\left| - \left(X_{n} = \omega_{n} \right) \right|$ P(X=U) - -p(w,

5.2. Filtrations.

- Let $N \in \mathbb{N}, d_1, \dots, d_N \in \mathbb{N}, \Omega = \{1, \dots, d_1\} \times \{1, \dots, d_n\} \times \dots \times \{1, \dots, d_N\}.$
- That is $\Omega = \{\omega \mid \omega = (\omega_1, \dots, \omega_N), \omega_i \in \{1, \dots, \overline{d_i}\}\}$.
- $d_n = 2$ for all *n* corresponds to flipping a two sided coin at every time step.

Definition 5.18. We define a *filtration* on Ω as follows: $\begin{array}{c} F_{\underline{0}} = \{ \emptyset, \underline{\Omega} \}. & \longleftarrow & \exists m \mid 0 & \forall m \\ & & \overline{\mathcal{F}_{\underline{1}}} = \text{all events that can be described by only the first coin toss (die roll). E.g. } \underline{A} = \{ \omega \mid \omega_1 = H \} \in \mathcal{F}_{\underline{1}}. \\ & & \overline{\mathcal{F}_{\underline{n}}} = \text{all events that can be described by only the first n coin tosses.} \\ & & \text{More precisely, given } \underline{\omega} = (\underline{\omega}_1, \dots, \underline{\omega}_N) \in \underline{\Omega} \text{ and } \underline{n} \in \{ 0, \dots, N \} \text{ define} \\ & & & & \\ & & & & \\ \\ & & & \\ & & & \\ \\ & & & \\ & &$

 $\xi \subseteq \mathcal{P}(\mathcal{S})$

1=

Foren art of SZ.

Remark 5.19. Note $\{\emptyset, \Omega\} = \mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \cdots \subseteq \mathcal{F}_N = \mathcal{P}(\Omega).$

Question 5.20. Let $\Omega = \{H, T\}^3 \cong \{1, 2\}^3$. What are $\mathcal{F}_0, ..., \mathcal{F}_3$?

 $\omega', \omega' - \omega' \rightarrow \kappa$ elemts of Σ . $\omega' = (\omega', \omega'_2, \dots, \omega'_N) \qquad M = 1$ $\nabla = (\omega', \omega'_2, \dots, \omega'_N) \qquad T_{1}(\omega) = -$

