ENABLE VIDEO IF YOU CAN
(\& even bl you cont \downarrow)
4. Binomial model (one period)

Say we have access to a money market account with interest rate r. The binomial model dictates that the stock price varies as follows. Let $p \in(0,1), \underline{q}=1-\underline{p}, 0<\underline{d}<\underline{u}$ (up and down factors). Flip a coin that lands heads with probability p, and tails with probability q. When the coin lands heads, the stock price changes by the factor u, and when it lands tails it changes by the factor d.
Question 4.1. When is there arbitrage in this market?

$$
u S_{0}
$$

Question 4.2. If a security pays $\underbrace{V_{1} \text { at time } 1, ~ w h a t ~ i s ~ t h e ~ a r b i t r a g e ~ f r e e ~ p r i c e ~ a t ~ t i m e ~} 0$. (V_{1} can depend on whether the coin flip is heads or tails).
Say Binmen mendel No art $(2 d<1+v<u)$
Replace V_{1} Stat with X_{0} wealth $\left\{\begin{array}{l}\Delta_{0} \text { shes of Stack. } \\ X_{0}-\Delta_{0} S_{0} \text { cash. }\end{array}\right.$
Lead: Find $X_{0} \& \Delta_{0}+$ wealth at time $1=V_{1}$ (pay off of sec).
If ae do this than $X_{0}=$ APP.
(1) $X_{1}=\operatorname{vea}$ h at time $1=\Delta_{0} S_{1}+\left(X_{0}-\Delta_{0} S_{0}\right)(1+\tau)$

$$
=\Delta_{0}\left(S_{1}-(1+\pi) S_{0}\right)+(1+r) X_{0} \stackrel{\text { Wat }}{=} V_{1}
$$

$\left.\begin{array}{rl}\Leftrightarrow & \text { (1) hats: } \\ & \Delta_{0}\left(n S_{0}-(1+T) S_{0}\right)+(1+r) X_{0}=V_{1}(H) \\ (\theta) \text { If tails: } & \Delta_{0}\left(d S_{0}-(1+T) S_{0}\right)+(1+N) X_{0}=V_{1}(T)\end{array}\right\}$ 2 Eq. $2 \operatorname{Vankanas}\left(X_{0} \& O_{0}\right)$. Sake
(2) To salve fond $\tilde{p} \& \tilde{q}+\tilde{\psi}+\tilde{q}=1$

$$
\Leftrightarrow \quad \underbrace{\tilde{S_{1}}(H)}_{u S_{0}}+\tilde{q} \underbrace{S_{1}}_{d S_{0}(T)}=(1+\tau) \delta_{0}
$$

(3)

$$
\begin{aligned}
\tilde{q}(a)+\tilde{q}(\theta) & \Rightarrow(1+r) X_{0}=\tilde{\phi} V_{1}(H)+\tilde{q} V_{1}(T) \\
& \Rightarrow X_{0}=\frac{\tilde{\phi} V_{1}(H)+\tilde{q} V_{1}(T)}{1+q}
\end{aligned}
$$

(4) Find Δ_{0} is Tane (a)-(b).

$$
\begin{aligned}
& \Rightarrow \Delta_{0}(n-d) S_{0}=V_{1}(H)-V_{1}(T) \\
& \Leftrightarrow \Delta_{0}=\frac{V_{1}(H)-V_{1}(T)}{(n-d) S_{0}}
\end{aligned}
$$

(5)

$$
\begin{aligned}
\tilde{p}_{n}+\tilde{q} d & =1+r \Leftrightarrow \tilde{p}_{u}+(1-\tilde{p}) d=1+r \\
& \Leftrightarrow \tilde{p}(n-d)=1+r-d \Leftrightarrow \tilde{p}=\frac{1+r-d}{u-d}
\end{aligned}
$$

$$
\tilde{q}=1-\hat{p}=\frac{u-(1+n)}{u-d}
$$

Seak: $\tilde{\phi} \& \tilde{q}$ called the "Rish nentad Parmanolilities".
(1) Expucted wetwon of Stock after than 1 .

$$
=p S_{1}(H)+q S_{1}(T)=(p u+q d) S_{0}
$$

(2) Smptoce was the coim frits haths with prot $\tilde{\phi}$

Expeited retam of totek at time $1=\tilde{q} S_{1}(H)+\tilde{q} S_{1}(T)$

$$
=(1+r) S_{0}
$$

$=S_{\text {me }}$ vetarn ae patiang maray in back.

Question 4.3. What's an N period version of this model? Do we have the same formulae?

$$
S_{n}=S_{0}\left(u^{\# \text { heads }}\right)\left(d^{\# \text { tails })}\right.
$$

u-iid coim fless.
Gant: Analyee the n firied case tranghly.
(faien 1) (pried 2)
(1) Secumties that dont expine at a fread time.
(2) American aftions.
5. A quick introduction to probability $(325 \rightarrow$ Coneq. \rightarrow fritter you knows drabs $)$ or yonne in 325 .
Let $N \in \mathbb{N}$ be large (typically the maturity time of financial securities).

Definition 5.1. The sample space is the set $\underline{\Omega}=\left\{\underline{\left(\omega_{1}, \ldots, \omega_{N}\right)} \mid\right.$ each ω_{i} represents the outcome of a coin toss (or die roll). $\}$
\triangleright E.g. $\omega_{i} \in\{H, T\}$, or $\omega_{i} \in\{ \pm 1\}$.
\triangleright Coins / dice don't have to be identical: Pick $\underline{M_{1}}, M_{2}, \ldots, \in \mathbb{N}$, and can require $\omega_{i} \in\left\{1, \ldots, M_{i}\right\}$.
\triangleright Usually in probability the sample space is simply a set; however, for our purpose $\overline{\text { sit }}$ is more convenient to consider "coin toss spaces" as we defined above.
(Definition 5.2. A sample point is a point $\omega=\left(\omega_{1}, \ldots, \omega_{N}\right) \in \Omega$ 组der $\rightarrow \omega \in S L$ is a sample point
Definition 5.3. A probability mass function is a function $p: \Omega \rightarrow[0,1]$ such that $\sum_{\omega \in \Omega} p(\omega)=1$.
Definition 5.4. Ag event is a subset of Ω. Define $\boldsymbol{P}(A)=\sum_{\omega \in A} \overline{p(\omega) \text {. }}$

$$
\text { (} \phi(\omega)=\phi \omega x)-f_{0}\{\omega\}
$$

$A C \Omega$ sane emit $P(A)=$ port A scours $=$

