Assignment 13 (assigned 2021-11-26, due 2021-12-03).

1. Consider a market which has a money market account with interest rate $r=5 \%$ and three stocks with price processes denoted by S^{1}, S^{2}, S^{3} respectively. The price of each stock changes according to the roll of a four sided die as follows: $S_{n+1}^{i}=f_{i, j} S_{n}$ if $\omega_{n+1}=j$. Here $f_{i, j}$ is the matrix

$$
\left(f_{i, j}\right)=\left(\begin{array}{cccc}
1.15 & 1 & .9 & 1 \\
1 & 1.1 & .8 & 1 \\
1 & 1 & 1 & 1.4
\end{array}\right)
$$

At time $n=0$ all three stocks are worth $\$ 10$. Find the arbitrage free price of an European call option on S^{1} with strike price $\$ 10$ and maturity $N=2$. Also find Δ_{0} (the position of the replicating portfolio in each of the assets) at time 0.
2. Consider a market which has a money market account with interest rate $r>0$ and two stocks with price processes denoted by S^{1} and S^{2} respectively. The price of each stock changes according to the roll of a three sided die: If the die rolls $j \in\{1, \ldots, 3\}$ the new price is $f_{i, j} S^{i}$, for some given factors $f_{i, j}>0$. Suppose further $f_{i, 1} \geqslant f_{i, 2}=1 \geqslant f_{i, 3}$ for $i \in\{1,2\}$. Find a necessary and sufficient condition that the market is complete and arbitrage free.
3. (a) Let $\mathcal{Q}=\left\{\tilde{\boldsymbol{P}}^{\alpha}\right\}$ be the set of all risk neutral measures. For each $\tilde{\boldsymbol{P}}^{\alpha} \in \mathcal{Q}$, let \tilde{p}^{α} be its probability mass function. Given $\theta \in[0,1]$, and $\tilde{\boldsymbol{P}}^{\alpha}, \tilde{\boldsymbol{P}}^{\beta} \in \mathcal{Q}$ define the measure $\theta \tilde{\boldsymbol{P}}^{\alpha}+(1-\theta) \tilde{\boldsymbol{P}}^{\beta}$ to be the probability measure with probability mass function $\theta \tilde{p}^{\alpha}+(1-\theta) \tilde{p}^{\beta}$. For every $\theta \in[0,1]$, and $\tilde{\boldsymbol{P}}^{\alpha}, \tilde{\boldsymbol{P}}^{\beta} \in \mathcal{Q}$ must $\theta \tilde{\boldsymbol{P}}^{\alpha}+(1-\theta) \tilde{\boldsymbol{P}}^{\beta} \in \mathcal{Q}$? (I.e. is the set of all risk neutral measures a convex set?)
(b) Consider an arbitrage free market with d risky assets and a bank. Consider a new security on this market, that may or may not be replicable. Let \mathcal{V}_{0} be the set of all possible arbitrage free prices of this security at time 0 . Must \mathcal{V}_{0} either be empty, or be an interval? Prove it, or find a counter example.
4. Let $0<d<1+r<u, d<1<u$, and consider a market model consisting of a bank with interest rate r, and a stock with price process S_{n} defined as follows: We start with $S_{0}>0$. At time n, roll a 3 sided die and set $S_{n+1}=u S_{n}$ if we roll $1, S_{n+1}=S_{n}$ if we roll 2 and $S_{n+1}=d S_{n}$ if we roll 3 .
(a) Is this market complete? Is it arbitrage free? Prove it.

Suppose we add a second risky asset to this market whose price is given by $V_{n}=\left(S_{n}-S_{0}\right)^{+}$for all $n \geqslant 1$.
(b) If N (the total number of periods) is 1 , find all $V_{0} \in \mathbb{R}$ for which this market is complete and arbitrage free.
(c) Suppose now $N=2$ and $u d<1$, and $V_{0} \in \mathbb{R}$ is any one of the values you found in the previous part. Is this market complete? Is it arbitrage free? Prove or disprove your answer.

Assignment 14 (assigned 2021-12-01, due Never).
In light of your final, this homework is not due.

1. Let X_{n} be a sequence of infinitely many fair coin flips. A bet of B_{n} dollars at time n pays $B_{n} X_{n+1}$ dollars at time $n+1$. The bet B_{n} may be random but has to be adapted (i.e. B_{n} can only depend on the first n coin flips).
(a) Let B_{n} be an adapted process, and consider a gambler that bets B_{n} dollars at time n. Let M_{n} denote the cumulative gain/loss of the gambler up to (and including) time n. By convention, we set $M_{0}=0$. Write down a formula for M_{n}. Is it a martingale?

A gambler decides to go double or nothing. He bets $\$ 1$ at time 0. After that, he doubles his bet if he loses and collects his winnings and stops playing if he wins. Let τ be the time he stops playing, B_{n} his bet at time n and M_{n} be his cumulative gain/loss up to (and including) time n.
(b) Is τ a stopping time? Is τ finite almost surely?
(c) Compute $\boldsymbol{E} M_{n}, \boldsymbol{E} M_{\tau}, \boldsymbol{E} M_{\tau}^{2}$
(d) We've proved Doob's optional sampling theorem when τ is bounded. Does it apply here?
(e) More generally Doob's optional sampling theorem also applies when there exists $C \in \mathbb{R}$ such that $\boldsymbol{E} \tau<\infty$ and $\boldsymbol{E}_{n}\left(\mathbf{1}_{\tau>n}\left|X_{n+1}-X_{n}\right|\right) \leqslant C$ for all $n \in \mathbb{N}$. Are either of these conditions satisfied here?
2. Consider the Binomial model with interest rate $r \geqslant 0$, maturity $N=\infty$, and $1+r<u=1 / d$. Fix $m_{0}, n_{0} \in \mathbb{N}$ and define $L=d^{m_{0}} S_{0}$ and $U=u^{n_{0}} S_{0}$. Let $\tau=\min \left\{n \in \mathbb{N} \mid S_{n} \notin(L, U)\right\}$.
(a) Suppose $u=2, r=1 / 2$, and $A, B \in \mathbb{R}$. An option matures at the random time τ and pays A if $S_{\tau}=L$ and B if $S_{\tau}=U$. Find the arbitrage free price of this option at time 0 .
(b) Do the previous part without assuming $u=2$ and $r=1 / 2$.
3. I may add more problems later.

