LECTURE NOTES ON DISCRETE TIME FINANCE
FALL 2020

GAUTAM IYER

Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213.

E-mail address: gautam@math.cmu.edu.



CONTENTS

1. Preface. 3
2. Syllabus Overview 4
3. Replication, and Arbitrage Free Pricing 6
4. Binomial model (one period) 10
5. A quick introduction to probability 13
5.1. Independence 14
5.2. Filtrations 19
5.3. Conditional expectation. 21
5.4. Martingales 32
5.5.  Change of measure. 40
6. The multi-period binomial model 43
6.1. Risk Neutral Pricing 43
6.2. State processes. 50
6.3. Options with random maturity 60
6.4. Optional Sampling 67
6.5. American Options 73
6.6. Doob Decomposition and Optimal Stopping 83
7. Fundamental theorems of Asset Pricing 91
7.1. Markets with multiple risky assets 91
7.2. First fundamental theorem of asset pricing. 93
7.3. Second fundamental theorem. 100

7.4. Examples and Consequences 103



8. Black-Scholes Formula 106

8.1. Law of large numbers. 107
8.2. Central limit theorem. 110
8.3. Brownian motion. 111
8.4. Convergence of the Binomial Model 117

Note: The page numbers and links will not be correct in the annotated version.



1. Preface.

These are the slides T used while teaching this course in 2020. I projected them (spaced out) in class, and filled in the proofs
by writing over them with a tablet. Both the annotated version of these slides with handwritten proofs, and the compactified
un-annotated version can be found on the class website. The I&TEXsource of these slides is also available on git.
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. Syllabus Overview L,J\\“—“_/X//\—/

Class website and full syllabus: Lhttp ://wuw.math.cmu.edu/~gautam/sj/teaching/2020-21/370-dtime-finance

TA’s: JonghwaPark <jonghwap@andrew.cmu.edu>, Karl Xiao <kzx@andrew.cmu.edu>, Hongyi Zhou <hongyizh@andrew.cmu.edu>
Homework Due: Every Wednesday, before class (on Gradescope) 7

Midterms: Wed Sep 29, 5th week, and Wed Nov 3rde (self proctored, can be taken any time)

Zoom lectures: L

> [Please enmable video) (It helps me pace lectures).

> te i ! ing—Use_headphenes if possible. Consent to be recorded.

>\ If T get disconnected, check your email for instructions.

Homewor
> ase! {Use a scanning app, and not simply take photos. (I use Adobe Scan.)
> within an hour|of the deadline. 100% penalty afterthat.

> Two homework assignments can be turned in 24h late without penalty.

> Bottom 2 homework scores are dropped from your grade (personal emergencies, other deadlines, etc.).

> Collaboration is encouraged. H is not a test — ensure you learn from doing the homework.

> You must \\;@M and can only turn in solutions you fully understand.

Exams:

> Can be taken at any time on the exam day. Open book. Use of internet allowed.

D@@ You may not seek or receive assistance from other people. (Can search forums; but may not post.)
> Self proctored: Zoom call. Record yourself, and your screen to the clou

> Share the recording link; also download a copy and upload it to the designated location immediately after turning in your exam.



« Ac
> |Zero tolerance for violations (automatic R).
> Violations include:
— Not writing up solutions independently and/or plagiarizing solutions
— Turning in solutions you do not understand.
— Seeking, receiving or providing assistance during an exam.
— Discussing the exam on the exam day (24h). Even if you have finished the exam, others may be taking it.
> All violati i iversity, ay impose additional penalties.
« Grading: 30% homework, 20% each midterm, 30% final.

e




3. Replication, and \Arbitrage Free

o Start with a financial market consisting of traded assets (stocks, bonds, money market, options, etc.)

« We model the price of these assets through random variables (stochastic processes).
e |No Arbitrage Assumption:

> In order to make money, you have to take risk—(€an’t-make something-eut-of nothing.) £=
> There doesn’t exist a trading strategy with\Xo =
« Now consider a non-traded asset Y (e.g. an option).

vV aoTy 1 B
« Wrbitrage free price) Vy is the arbitrage free price of Y, if given the opportunity to trade Y at price Vo, the market remains
arbitrage free. = — N = o
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e How do you compute the arbitrage free price? Replication:
ﬂ]b Say the non-traded asset WN (e.g. call optlons)

f'\ > Say you cme the payoff through a tr tradi ing

>[Then the arbitrage free price is uniquely determined, and must be
[ g pr quely

uestion 3.1. Is the arbitrage free price always unique?

(using only traded assets).
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Theorem 3.2. The arbitrage free price is unique if and only if there is a replicating strategy! In this case, the arbitrage M
exactly the initial capital of the replicating strategy.

Proof. We already proved that if a replicating strategy exists then the arbitrage free price is unique. The other direction is harder,
and will be done later.

J

V0L B, o ik sl o] e iy Sl
e b
s e AF T




L™

(m¢wgw;gmmm;\]

A
(,=>TLL Xy =0, s FaZ0 Auwd b =0

: N\ - %@
AFDS S\ AP L fle «%@M b el
9 i s 1 . %M fl
DGk o) SN .



Question 3.4. Consider ial market with a money market account with interest rate r, and a stock. Let K > 0. A forward
contra t-\L s the hld tbytﬁ stock at pric ﬁm_i/tytm N What is the ﬂragefreeprz’ceattimeo.?
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4. Binomial model (one period)

Say we have access to a money market account with interest rate r. The binomial model dictates that the stock price varies as
follows. Let pE (0,1),g=1—p,0< E__< u (up and down factors). Flip a coin that lands heads with probability p, and tails with
probability g. When the coin la the stock price changes by the factor u, and when it lands tails it changes by the factor Z
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Question 4.2. If a security pays Vi at time 1, what is the arbitrage free price at time 0. (Vi can depend on whether the coin flip is
heads or tails). o — —

P AEP Lg %}Lolm- S A, e 4,\)»[& Q@Aéég
e | )

e Q@@JF WJ/» (\xo -4, Q@>‘

Kool e 1= 46 4 (a0 =,

WhaT
X\; Av(gl—((wjgb I XDC“V‘”)‘ — \f\i



N I R L

Q(CT>> I f K h | [ Jro%[s = D\iﬁ

L R A A T TN
N N TR 1

= g, (@) e le) M

V (k)

0 o (- o)g, v xSy e

4



s
i}
e
7 L
dhega
A
. )a
X

-8

s
)
4Jl
A N
" i e
d .
han X
o
A O/L
| %
S A
@\

Vs



@AEL£ VIDED  (F U M




4. Binomial model (one period)

Say we have access to a money market account with interest rat@ The binomial model dictates that the stock price varies as follows.
Let p€ (0,1),¢g=1—p, 0 < d < (up and down factors). Flip a coin that lands heads with probability p, and tails with probability ¢.
When the coin lands heads, the stock price changes by the factor u, and when it lands tails it changes by the factor d.

Question 4.1.‘1Khen is there arbitrage in this market? C@J]M ‘gb}? ) 7 M g@
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Question 4.2. If a security pays Vi at time 1, what is the arbitrage free price at time 0. (Vi can depend on whether the coin flip is
heads or tails). = ¢ |
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Let N € N be large (typically the maturity time of financial securities)

5. A quick introduction to probability ( _7;2_6/ —> C@r\,@l/ — M"‘W 7% /'/VV()/>
. 22T |

Definition 5.1. The sample space is the set Q = {(w1,...,wn) | each wi represents the outcome f a coin toss (or die roll).
ST SPRe = Wb N) —_

> E.g w; € {H,T}, or w; € {£1}.

> Coins / dice don’t have to be identical: Pick My, My, ..., € N, and can require w; € {1,..., M;}.

> Usually in probability the sample space is simply a set however for our purposesit is more convenlent to consider “coin toss spaces”
2PN OBt

as we defined above.

\Deﬁnition 5.2. A sample point is a point w = (w1, ...,wN)
Definition 5.3. A|probability mass function|is a function p:gﬁ [0,1] such that\ZwEQ plw) = 1.

—

- -
Definition 5.4. An event is a subset of Q. Define P(A) =" ., p(w).
’R
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5. A quick introduction to probability

/
This is just a quick reminder, and specific to our situation (coin toss spaces). You should have already taken a probability course, or
be co-enrolled in one. The only thing we will cover in any detail is conditional expectation.

Let N € N be large (typically the maturity time of financial securities).

Definition 5.1. The sample space is the set Q = {(w1,...,wy) | each w; represents the outcome of a coin toss (or die roll).}
> E.g. w; € {H,T}, or w; € {£1}.
> Coins / dice don’t have to be identical: Pick Ml, Mg, ..., € N, and can require wi € {L....M; }

N%\_,

> Usually in probability the sample space is sunply a set; however for our purposes it is more convenient to consider “coin toss spaces”
as we defined above.

Definition 5.2. A sample point is a point w = (w1,...,wy) € Q € Q.

T
Definition 5.3. Aﬂobabilz’ty mass functionyis a function p: Q — [0, 1] such that Yowea Pw) = 1.
- — -

Definition 5.4. An event is a subset of 2. Define P(A) =3_ 4 p(w).

M
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5.1. Random Variables and Independence.

Definition 5.5. A random variable is a function X : .Q?_> R.

Question 5.6. What is the random variable corresponding to the outcome of the n'™ coin toss?
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Definition 5.7. The ezpectation of a random variable X is EX = ) X

Remark 5.8. Note if Range(X) = {z1,...,z,}, then EX =3 X

Definition 5.9. The variance of ndom variable is |Var(X) = E(X — EX)?
—\EX? — (EX)2.

Remark 5.10. Note Var(X)

.

(w)

(w)p(w).




&«— P(A|B) = P4

Definition 5.11. Two events are independent if P(A N B) = P(A)P(B).
i -Collection A;,, ..., A;, we have

Definition 5.12. The events Ay, ..., A, are 1 Or any su
P<Az1 QAZ‘Z .- ﬁAzk) = P(AZI)P(Am) . P(Azk) .
Remark 5.13. When n > 2, it is not enough to only require P(4A1 N Ay N---NA,) = P(A;)P(Ay)--- P(A,)

2Byt Akl s W f O PR 4,08 = TA)TR)TY
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efinition 5.14. Two random variables are independent if P(X =z, ¥V = y) =P(X =z)P(Y =y) for all ,y € R.
efinition 5.15. The random variables X1, ..., X, are independent if for all z;,...,z, € R we have

P(X) =, Xo=m,..., Xy =2,) = P(X; = x;)P(XQ =x3) - P(Xy = ).

emark 5.16. Independent random variables are uncorrelated, but not vice Qersa.-

roposition 5.17. The coin tosses in our setup are all independent if and only if, [there exists functions p1, ..., py such that

p1 w1 P2 w2) pN(WN)/-ﬂ\
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e Let NEN dy,...,dy €N, Q={1,....di} x{1,. poxox{l . dy % Q ?C\SL>

o That ISQ*{M|W—(M1, o wn), wi € {1, ..,g_ll
e d,=2foralln corresponds to flipping a two 51ded coin at every time step.

Definition 5.18. We define a filtration on  as follows: {ﬁ 4‘% S 7
> H={0.0). = Talo g luomg RV 2N 7T R s ’
> .E = all events that can'be described by only tl{e first ¢oin toss (die roll). E.g. A ={w|wi = H} € F;.

> JF, = all events that can be described by only the first n coin tosses.

More precisely, given w = (w1, ...,wy) € @ and n € {0,..., N} define wn =

() = {weQ|w_@1,...,%>andg;:giforau@gn}. [/
Nowélsdeﬁnedbyf d_ef{ACQ‘A UL’ ) Wl W egc}
Remark 5.19. Note {0,Q} =Fy C F, C--- C Fy =P(Q).
Question 5.20. Let ) = {H T}3 = {1,2}3. What are Fy, ..., F3?
o W 7 <
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Definition 5.21. Let n € {0,..., N}. We say a random variable X is

> Equivalently, for any B C R, the event {X € B} € F,.
> Equivalently, if w’ € II,,(w) then X (w') = X (w).

f

Question 5.22. Let X (w) < w1 — 10wy. For what n is F,-measurable?
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5.2. Filtrations.

e Let NeN,dy,...,dv eN, Q={1,....d1} x{1,...,dn} x - x{1,...,dn}.
e That is Q ={w|w = (w1,...,wn), w; € {1,...,d;}}.

e d, = 2 for all n corresponds to flipping a two sided coin at every time step.

Definition 5.18. We define a filtration on Q as follows:

> .Fo = {@, Q}
> F1 = all events that can be described by only the first coin toss (die roll). E.g. A={w|w; = H} € Fi.
> JF, = all events that can be described by only the first n coin tosses.

More precisely, given w = (w1, ...,wn) € Q and n € {0,..., N} define
,(w)={w' € Qv = (w1,...,wy) and w, = w; for all i < n}.

Now F,, is defined by F, & {ACQTJ;:g w), wh,... w’“EQ}

Remark 5.19. Note {0,Q} =Fo CF C--- C Fy = P(Q).
P
Question 5.20. Let Q = {H,T}* = {1,2}%. What are Fo, ..., F3?

b g, I
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Definition 5.21. Let n € {0 ., N}.|We say a randpm variable X is F,,-measurable if X (w) only depends on wy, ..., wn.

o O O PR
Question 5.22. LetX() "w) — 10wy, For what n is F,-measurable?
XG) = (o, — 101, i §ﬁ wgpe Y=Y
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5.3. Conditional expectation. D’({L/ %‘WM /&,—_\

Definition 5.23. Let X be a random variable, and n < N. We define E(X | .,7-_'2) = E, X to be the random variable given by
p— L =7 L
> W)X (W)

%N/V\X>Cco> — &g(%) = w/eﬂng\?; s where : {w/ c Q|w'1 = wi, '“7w; an}
\

(L))

Remark 5.24. E, X is the “best approximation” of X given only the first n coin tosses.

Remark 5.25. The above formula does not generalize well to infinite probability spaces. We will develop a definition that does generalize;
after we have that definition we will never ever ever use this formula.

E
0\




(1) E, X is an F,-measurable random variable.

“(2) For every A€ Fy, Z E, X(w)pw) = Z X(w)p(w).
 weA weA

R

\Proposition 5.26. The conditional expectation E,X defined by the above formula satisfies the following two properties:
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Lecture 6 (9/13).(Please enable your video if possible.
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5.3. Conditional expectation.

Definition 5.23. Let X be a random variable, and n < N. We define E(X | F,,) = E,X to be the random variable given by
> W)X (W)

= BX() =T C where M) = (o € Qul =wn, W = wn)

> W)

w’ €Iy, (w)

Remark 5.24. E, X is the “best approximation” of X given only the first n coin tosses.

Remark 5.25. The above formula does not generalize well to infinite probability spaces. We will develop a definition that does generalize;
after we have that definition we will never ever ever use this formula.

E{KX (W) = AW d K m <Hm %wj[ ﬂM CW>
= X(w/) ().
T C@M




Proposition 5.26. The conditional expectation E,X defined by the above formula satisfies the following two properties:
E, X is an F,-measurable andom variable.

(2) For every A € Fy, ZEX ZX
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(2) For anyﬁ({ib\ﬂl then there exist w!, ... ,w® € Q such that A is the disjoint union of IL,,(w'),... I, (w¥).
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Proposition 5.27 (Uniqueness). If Y and Z are two F,-measurable random variables such that ) . , Y (w)p(w) = > c4 Z(w)p(w) for
every A € F,, then we must have P(Y = Z) = 1. ey =< -
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Definition 5.28. Let X be a random variable, and n < N. We define the conditional expectation of X given F,, denoted by E, X, or
E(X | F,), to be the unique random variable such that: — T T T T T =

»X is a F,-measurable random variable.

(2) For everyég Frny, we have 3- ) E, X (w)p(w) =3, cn X(w)p(w

X (W
e pg——

).
Remark 5.29. This is the definition that generalizes to the continuous case. All properties we develop on conditional éxpectations will
only use the above definition, and not the explicit formula.
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Definition 5.28. Let X be a random variable, and n < N. We define the |conditional expectation|of X given F,, denoted by E, X, or
E(X | F,.), to be the unique random variable such that: = -
/7(1) E, X is mandom variable. -

é(?) For everyiA C ]-'n! we have EM = ZweAX(w)p(w).\J

Remark 5.29. This is the definition that generalizes to the continuous case. All properties we develop on conditional expectations will
only use the above definition, and not the explicit formula.
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Theorem 5.31. (1) If X,Y are two random variables and\m S R,ithen En(:X' +aY)=E, X +aE,Y. —On’ho@/
2) (Tower property)) If m < n, then E,,(E,X) = E,; X. §
(3 e, and Y is any random variable, then @(XY) =XE,Y
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Theorem 5.32. If X is independent of F,, then E, X = EX.



Theorem 5.33 (Independence lemma). If X is independent of F,, and Y is F,,-measurable, and f: R — R is a function then

E,.f(X,Y)= Zf z, YYP(X = x;), where {x1,...,xm} = X(Q).



5.4. Martingales.

Definition 5.34. A stochastic process is a collection of random variables Xg, X1, ..., Xn.
Definition 5.35. A stochastic process is adapted if X,, is F,,-measurable for all n. (Non-anticipating.)
Question 5.36. Is X, (w) =)
Question 5.37. Is X,,(w) = wy, adapted? Is X, (w) = 15 adapted? Is X, (w) = wis adapted? Is X, (w) = wn_; adapted?

w; adapted?

i<n

Remark 5.38. We will always model the price of assets by adapted processes. We will also only consider trading strategies which are
adapted.



Ezample 5.39 (Money market). Let Yy = Yo(w) = a € R. Define Y,,41 = (1 4+ r)Y,,. (Here r is the interest rate.)

uSp (W) wWnyr =1,

Ezample 5.40. Suppose Q = {1}V = {H T}V = {1,2}V. Let Sy = a € R. Define S,,41(w) = {dS () )
n\W) Wpy1 = —1.

Is S, adapted? (Used to model stock price in the multi-period Binomial model.)



Definition 5.41. We say an adapted process M, is a martingale if E, M, 1 = M,. (Recall E,Y = E(Y | F,,).)
Remark 5.42. Intuition: A martingale is a “fair game”.

Ezample 5.43 (Unbiased random walk). If Xy,..., Xy are i.i.d. and mean zero, then S, = >_}'_, X}, is a martingale.



Question 5.44. If M is a martingale, and m < n, is E,, M, = M,,?



Question 5.45. If M is a martingale does EM,, change with n?



Question 5.46. Conversely, if EM,, is constant, is M a martingale?
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(Theorem 5.31. (1) If X,Y are two mndom vamables and a € R, then E, (X + oY) = E, X + aE,Y. (On homework).
_— (—>

(2) (T m < n, then E,, 1
(8) If X is F,, measurable, and Y zs any mnaom vamable then E (XY! =XE,Y.
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Theorem 5.32.

If X is independent of F,|then E, X @
_—
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Theorem 5.33 (Independence lemma). If X is independent of F,, andY is F,-measurabld, and f: R — R is a function then
= . = =

c/ E,f(X|Y)= Z f(z,Y)P(X =), where {x1,...,Tm} = X(Q).
‘ i—1 = VN
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5.4. Martingales.
e
Definition 5.34. A stochastic process is a collection of random variables Xg, X1, ..., Xn.
———— ¢ —_ =

Definition 5.35. A stochastic process iy adapted fif X, is F,,-measurable for all n. (Non-anticipating.)

n(w) = wis| adapted? 1s \X,,(w) = wn—; ¢dapted?

Remark 5.38. We will always model the price of assets by adapted processes.” We will also only consider trading strategies which are

adapted. 5
m: 2 W, (wiéi’i\i,>



Ezample 5.39 (Money market). Let Yy = Yo(w) = a € R. Define Y,,41 = (1 4+ r)Y,,. (Here r is the interest rate.)

uSp (W) wWnyr =1,

Ezample 5.40. Suppose Q = {1}V = {H T}V = {1,2}V. Let Sy = a € R. Define S,,41(w) = {dS () )
n\W) Wpy1 = —1.

Is S, adapted? (Used to model stock price in the multi-period Binomial model.)



Definition 5.41. We say an adapted process M,, is a martingale if (Recall E,.Y = E(Y | Fp).)

Remark 5.42. Intuition: A martingale is a “fair game”.

Ezample 5.43 (Unbiased random walk). If Xy,..., Xy are i.i.d. and mean zero, then S, = >_}'_, X}, is a martingale.
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Definition 5.41. We say an adapted process M, is a martingale if E,,M,,.1 = M,,. (Recall E,,)Y = E(Y | F,,).)
—_— —_— = == =
Remark 5.42. Intuition: A martingale is a “fair game” Q/V\

Ezample 5.43 (Unbiased random walk). If X;,..., Xy arand Wn Sp = > p_, X} is a martingale.
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Ezample 5.44 (Drawing balls wi nt). Blue ba container without replacement. The container
has 2 red and 2 balls initially.\i(ou win $1 if the ball is blue| and lose |$1 if the ball is red.|Is the process of your winnings a martingale?
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Question 5.45. If M is a martingale, and m < n, is E, M, = M,,? %" >/€5 CT@ 4 \I/Wf/}, M‘>
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Question 5.46. If M is a martingale does EM,, change with n?
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Question 5.47. Conversely, if EM,, is constant, is M a martingale?
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Question 5.50. Let fn be a martmgale wzth Let A, be an adapted process, Xog € R and define Xn+1 X +Anény1- Is X a
martingale? QN M N Db\j
O Yo

Remark 5.51. Think of ﬁﬂ as e outcome of a fair gamg\‘belng played. You decide to bet on this game. Let A,, be your bet at time n;
your return from this bet is A, &,+1, and thus your cumulative return at time n 4+ 1 is X, 11 = X, + Ap&py1-
N~ : =
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5.5. Change of measure.

Example 5.52. Consider i.i.d. coin tosses with P(w, = 1) = p; and P(w, = —1) = ¢ = 1—p1. Let %z_gi >0, r > —1. Let
Spt1(w) = uS,(w) if wyi1 = 1, and Spy1(w) = dSy, (W) if wyi1 = —1. Let Dy, = (1 4+ 1)~ " be the “discount factor”.

Suppose we now invented a new “risk neutral” coin that comes up heads with probability 1 and tails with probability §; = 1 — p.
Let P, E, etc. denote the probability and eonditional expectation with respect to the new “risk neutral” coin. Find|p; so this a
P martingale. =

Theorem 5.53. Consider a market where S,, above models a stock price, and r is the interest rate
land heads and tails with probability p1 and q1 respectively. If you have a derivative security that pays

free price of this security at time n < ﬁ is given—by
/

Remark 5.54. Even though the stock price changes according to a coin that flips ith probability p;, the arbitrage free price is
computed using conditional expectations using the risk neutral probability. So when computing E,Vy, we use our new invented “risk
eutral” coin that flips heads with probability p; and tails with probability §.

ith\0 < d <1+ r <u.|The coins
ihe N, then the arbitrage




o Letp: QO — [0, 1] be a probability mass function on Q, and P(A) = > ., p(w) be the probability measure.
o Let p Q- [0,1] be another probability mass function, and define a second probability measure P by P(A)
‘T\_—/

(4) =0 if and only if P(1>4_) =0.
(w) = 0 ffor all w € Q.

ZwEA ﬁ@

Deﬁnltlon 5.55. We say P and P are equivalent if for every A € Fn,

Remark 5.56. When () is finite, P and E are equivalent if and only if we have <P

We let E, E,, denote the expectation and conditional expectations with respect to P respectively.
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5.5. Change of measure. (/ /\QQ‘l’ (‘W‘/\/WQ -

Ezample 5.52. Consider i.i.d. coin tosses with P(w, = 1) = p; and P(w, = =1) = ¢1 = 1 — p;. Let i’d >0, r > —1. Let
Spi1(w) = uSy(w) if wpyp1 =1, and Sy 41 (w) = dSp (W) if wpyr = —1. Let\D,, = (1 +r)~" be the “discount factor”.
Suppose we now invented a new “(@gnﬂm;r@m that comes up heads with probability p; and tails with probability ¢; =1 — p;.

Let !:3, E,, etc. denote the probability and conditional expectation with respect to the new “risk meutral” coin. Find p; so that D, S, is a
P martingale. :

Theorem 5.53. Consider a market where S, above models a stock price, and r is the interest rate with 0 < d < 1+ r < wu. The coins
land heads and tails with probability p1 and q1 respectively. If you have a derivative security that pays Vn at time N, then the arbitrage
oA e
V, = L~ B,DyV, =(1+7r)"VE,V
n D nt/NVN nVN -

free price of this security at time n < N is given by
—
: (‘ToU ?@

Remark 5.54. Even though the stock price changes according to a coim that flips heads with probability p1, the arbitrage free price is
computed using conditional expectations using the risk neutral probability. So when computing E,Vy, we use our new invented “risk
neutral” coin that flips heads with probability p; and tails with probability ¢.




o Lat dng

o Let D Q2 — [0,1] be a probability mass function on 2, and P(A) = > ., p(w) be the probability measure.
e Letp: Q— [0,1] be another probability mass function, and define a second probability measure P by P(A) = > e b(w).

Definition 5.55. We say P and P are equivalent if for every A € Fy, P(A) = 0 if and only if P(A) = 0.
——

Remark 5.56. When (1 is finite, P and P are equivalent if and only if we have p(w) =0 <= p(w) =0 for all w € Q

We let E, E,, denote the expectation and conditional expectations with respect to P respectively

M = 2 46 (k| A omay P)

o EA
Py 2 by (v Q\j>

W EA












Ezxample 5.57. Let Q be the sample space corresponding to N i.i.d. f_alr coins (heads is 1, tails is —1). Let a € R and define
Xpt1(w) = X (w) + wpt1 + a. For what a is there an equivalent measure P such that X is a martingale?

—_— = = =
1N

/MS X bx&fv\k nﬂs WB‘




6. The multi-period binomial model

6.1. Risk Neutral Pricing.

« In the multi-period binomial model we assume_ = {+1}~ corresponds to a probability space with N i.i.d. coins.

n n = ]_7 -
o Let u,d >0, Sy > 0, and define S, = WS Wit
ha 2]

ngn Wn41 = —1.
e u and d are called the up and down factors }espectively.
o Without loss, can assume d < u.
o Always assume no coins are deterministic: p; = P(w, =1) >0and ¢y =1 —p; = P(w, = —1) > 0.
e We have access to a bank with interest rate r > —1.
e D, = (147)"" be the discount factor ($1 at time n is worth $D,, at time 0.)
— >

Theorem 6.1. There exists a (unique) equivalent Lneasure P under which process D,,S,, is a martingale if and only if d < 1+ 7 < ul In
this case P is the probability measure obtained by tossing N~ i.i.d. coins with

_ B 14+r—d ~ - u—(1+r)
P n:l = :7’ P n:—l = = -,
n=D=h="""3 n=—N)=0 =" "3

=

~ _———
Definition 6.2. An equivalent measure P under which D,,S,, is a martingale is called the

Remark 6.3. If there are more than one risky assets, S', ..., Sk, then we require D, S}, ..., D,S¥ to all be martingales under the risk
neutral measure P. \ '

Remark 6.4. The Risk Neutral Pricing Formula says that any security with payoff Vjy at time N has arbitrage free pricd V,, = ﬁER(D NVN)
at time n. '
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6. The multi-period binomial model

6.1. Risk Neutral Pricing.
« In the multi-period binomial model we assume € = {+1}2 corresponds to a probability space with N i.i.d. coins.

. Letu,d>0, Sp> 0, and define S, 44 = 4 2o @n1 =1,
L den Wpt1 = —1.

e u and d are called the up and down factors respectively.

+ Without loss, can assume d < u.

e Always assume no coins are deterministic: p; = E(wn =1)>0and p=1-p= P(w, =-1) > 0.

o We have access to a bank with interest rater > —1. =

e D, = (14+7)"™ be the discount factor ($1 at time n is worth $D,, at time 0.)

Theorem~6.1. There exists a (unique) equivalent measure£ under which process| D, Sy, is a martingale if and only if|d < 1+ 7r < uf In
this case P is the probability measure obtained by tossing N i.i.d. coins with

~ _ 14+7r—-d ~ _
P(wnzl)zgzﬁ, P(w, =-1) 2:
Definition 6.2. AW under which Dn\Sn is a martingale is called the Teutral measure.
S
Remark 6.3. If there are more than one risky assets, St ..., S* then we require D, S}, ..., D,SF to all be martingales under the risk

neutral measure P.

Remark 6.4. The Risk Neutral Pricing Formula says that any security with payoff Vi at time N has arbitrage free price|V,, = DLER(D NVN)

e (Mo AF7 MLAWWLO =\, = %/{;i(DQVIQ\ L1



/

Ezxample 6.5. Consider two markets in the Binomial model setup with the same u, d, . In the first market the coin flip heads with
probability 99%. In the second the coin flips heads with probability 90%. Are the price of call options in these two markets the same?

(newe = i}







o s ol




e Consider an inLesior that starts Withealth, which he divides between cash and the stock.
o If he has A\Oshar\es of stock at time 07 then X; = AgS;y + (1 +7)(Xo —é@.
o We allow the investor to trade at time 1 and hold A; shares. > E———0

e Aj may be random, but must be Fi-measurable. \
o Continui ther, we see X411 = AnSni1 + (1 +7) (X, — ARSy). N ayl A jl’O % QA
L~ = == A m

e Both X and A are adapted processes. =

=

Definition 6.6. A self-financing portfolio is a portfolio whose wealth evolves according to
ST PEIUERE

— —_— Xny1 = énSnJrl + (1 + T‘)(Xn — AnSn) ,

for some adapted process A,,. — T UNSEY Yy \ CGAV\/>
oS

\ Theorem 6.7. Letd < 1 P be the risk neutral measure, and X,, represent the wealth of a portfolio at time The portfolio
—_— ~ —_—

is self-financing portfolio|if and bnly if the discounted wealth D, X,, is a martingale under P.

c —_——— -
Remark 6.8. The only thing we will use in this proof is tha Sy is a martingale under P\ The interest rate r can be a random adapted
process. It is also not special to the binomial model — it i ere is a risk neutral measure.

D%%% ]&M /DL%&‘@O\/?J Wj>

p-—

—



Before proving Theorem 6.7, we consider a few consequences:

Theorem 6.9. The multi-period binomial model is arbitrage free if and only zflii <l+r<u.

Remark 6.10. The first fundamental theorem of asset pricing states that a risk neutral measure exists if and only if the market is arbitrage
free. (We will prove this in more generality later.)
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Theorem 6.11 (Risk Neutral Pricing Formula). Let d < 1471 < u, and Vy be an Fn measurable random variable. Consider a security
that pays Vi at maturity time N. For any n < N, the arbitrage free price of this security is given by

1
V, = —E,(DyVy).
D, (DNVN)



Remark 6.12. The replicating strategy can be found by backward induction. Let w = (w’,wp41,w”). Then
Vi1 (W', 1,w") = Vo1 (W, —1L,w") Vg (W', 1) = Vi (', —1)
(u—d) Sy (w) T - d)S.w)

Ay (w) =



Proof of Theorem 6.7 part 1. Suppose X,, is the wealth of a self-financing portfolio. Need to show D, X,, is a martingale under P.



Proof of Theorem 6.7 part 2. Suppose D, X, is a martingale under P. Need to show X, is the wealth of a self-financing portfolio.



6.2. State processes.

Question 6.13. Consider the N-period binomial model, and a security with payoff Vn. Let X,, be the arbitrage free price at time n < N,
and A, be the number of shares in the replicating portfolio. What is an algorithm to find X,,, A, for all n < N? How much is the
computational time?



Theorem 6.14. Suppose a security pays Vi = g(Sn) at maturity N for some (non-random) function g. Then the arbitrage free price at
time n < N is given by V,, = f,(Sy), where:

(1) fn(x) =Vn(x) for z € Range(Sy).
(2) fn(x) = m(ﬁfn+1(fwr) + anJrl(dx)) for T e Range(sn)'

Remark 6.15. Reduces the computational time from O(2%) to O(EéV|Range(Sn)|) = O(N?) for the Binomial model.

N—n

1 N —
Remark 6.16. Can solve this to get f,(z) = (EwSLEn Z ( K n)ﬁqunka(xude”k)
k=0



Question 6.17. How do we handle other securities? E.g. Asian options (of the form g(ZéV Sk))?
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e Consider an investor that starts with X wealth, which he divides between cash and the stock. \N\M’\'
o If he has Ag shares of stock at time 0, then X7 = AgS; + (1 4 r)(Xo — AoSp). w
¢« We allow the investor to trade at time 1 and hold A shares. -
e Aj may be random, but must be Fi-measurable.

« Continuing further, we see X, 11 = ApSpt1 + (1 +7)(X, — ApSy).

e Both X and A are adapted processes. -

Definition 6.6. A self-financing portfolio is a portfolio whose wealth evolves according to

e 4 n+1 :_én n+1 + (‘1/":2(& - AnSn)a

for some |adapted [process A
—_ -
Theorem 6.7. Letd < 1 d P be the(msk neutral measure Iand X, represent the wealth of a portfolio at time n. The portfolio
is self- ﬁnancmg portfolio\if and only if\the discounted wealth D, X, is a martmgale under P.
—— —_—

Remark 6.8. The only thing we will use in this proof is that D,,S, is a martingale under P. The interest rate 7 can be a random adapted
process. It is also not special to the binomial model — it works for any model for which there is a risk neutral measure.

o



Before proving Theorem 6.7, we consider a few consequences:

Theorem 6.9. The multi-period binomial model is arbitrage free|if and only iffd <1+ r < u.

Definition 6.10._We say the market is arbitrage free if for any\self financing portfolio/with wealth process X X we have: Xy =0 and
Xn > 0 implies [Xy = 0}almost surely. \ —

Remark 6.11. The first fundamental theorem of asset pricing states that a risk neutral measure exists if and only if the market is arbitrage

free. (We will prove this in more generality later.)
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Theorem 6.12 (Risk Neutral Pricing Formula). LetJld <1+r <wu,and Vy be an Fy measurable random variable. Consider a securi
that pays Vi at maturity time N. For any n < N, the arbilrage free price of this security is given by
1 - NW-N
Vi=—EFE,(DNyVN). —
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Remark 6.13. The replicating strategy can be found by backward induction. Let w = (w’ ,wn+17(t1\'j). Then W= (le - (J\)M>
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Proof of Theorem 6.7 part 1.| Suppose X, is the wealth of a self-financing portfolio.! Need to shO\f\Dn n 18 a martingalg under
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Proof of Theorem 6.7 part 2. Suppose D, X,, is a martingale under P. Need to show X, is the wealth of a self-financing portfolio.
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6.2. KState processes. )
_

Question 6.14. Consider the N -period binomial model, and a security with payoff Let X, be the arbitrage free price_at time n < N,
and A the number of shares in the replicating portfolio. What is an algorithin to find X,, A, for alln < N? How much is the
computational time?
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Theorem 6.15. Suppose a security pays Vi = g(Sn)|at maturity N for some (non-random) function g. Then the arbitrage free price at
time n < N is given by Vi, = fn(Sy), where: T

—_—

A Bt renatay

i = 17 (A1 (u2) + 21 (de)) for 2 € Range(S,)

2 f,@) s (u2)
Remark 6.16. Reduces the computatjonal time from O(2%) to (ZéV|Range(Sn)|) = O(N?))for the Binomial model.

N—n

N —
fn(x) = W Z < ; n)?k‘jN—n_k{J_\i@ﬂde_n_k)

- k=0

Remark 6.17. Can solve this to get
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Question 6.18. How do we handle other securities? E.g. Asian options (of the form g(ZéV Sk))?

L— ===



Definition 6.24. We say a d-dimensional process Y = (Y'!,...,Y?) process is a state process if for any security with maturity m < N,
and payoff of the form V;,, = f,,(Y;,) for some (non-random) function f,,, the arbitrage free price must also be of the form V,, = f,(¥;,)
for some (non-random) function f,.

Remark 6.25. For state processes given fy, we find f, by backward induction. The number of computations at time n is of order
Range(Y,,).

Remark 6.26. The fact that S,, is Markov (under P) implies that it is a state process.
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Example 6.19 ‘ Knockout optlons) An and out call option |\with strike K and barrier U and maturity N gives the holder the option
(not obligation) to buy t price K at maturity time NV, p?r%oled the stock price has never exceeded the barrier price U. If the

stock price exceeds the barrler U before maturity, the option is worthless. Find an efficient algorithm to price this option.
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Definition 6.20. We say a _d-dimensional processz = (Zl, e ,)id)‘process is a state process if for any security with maturity m < N,
and payoff of the form V,,, = fm(Y;n) for some (non-random) function f,,, the arbitrage free price must also be of the form V,, = f,(Y;)
" - L

for some (non-random) functLlf)ﬁT;J
Remark 6.21. For state processes given fy, we typically find f,, by backward induction. The number of computations at time n is of
order Range(Y,,).

Remark 6.22. The fact that S,, is Markov (under P) implies that it is a state process.
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Definition 6.20. We say a d-dimensional process Y = (Y1, ..., Y% process is a state process if for any security with maturity m < N,

and payoff of the form V;,, = f,,(¥,) for some (non—random) functlon fm, the arbitrage free price must also be of the form V;, = fn( n)
~ _—

for some (non-random) function fp-

Remark 6.21. For state processes given f N, we typically find f, by backward induction. The number of computations at time n is of
==

order Rangel¥y). =~
glwét

Remark 6.22. The fact that S, isiMarkov’ (under P) implies that it is a state process.
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Theorem623 LetY = (Yl ..... Y ) be a d-dimensional process. Suppose we nﬁndfunt ons g, , gN such tha tYH( ) =
g+1 OJ_H ThnY —
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Question 6.27. Let A, = o Sk. Is A, a state process? 2= N O
Question 6.28. IsY, = (%,An) a state process?
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6.3. Options with random maturity. Consider the N period binomial model with 0 < d <1+ r < u.

Example 6.29 (Up-and-rebate option). Let A,U.> 0. The up-and-rebate option pays the face value A at the first time the stock
price exceeds U (up to maturity time N), and nothmg otherwise. Explicitly, let 7 = min{n < N | S, U} and let 0 = 7 A'N. The
up-and-rebate options pays Al,<y at the random time o.

Remark 6.30. By convention min () = co.

A




Definition 6.31. We say a random variable 7 is a Wme if:
(1) 7: 2 —={0,...,N}Uco

(2) For all n < N, the event {T < n} € F,.
Remark 6.32. We say T is a finite stopping time if 7 < co almost surely.

Remark 6.33. The second condition above is equivalent to requiring {7 = n} € F, for all n.
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6.3. Options with random maturity. Consider the N period binomial model with 0 < d <1+ w

— —
Example 6.29 (Up-and-rebate option). Let A,U > 0. The up-and-rebate option pays the face value A at the/first time the stock
pri eeds U (up to maturity time INV), and nothing otherwise. Explicitly, let| 7 = min{n < Sn= T },andTet 0 =7 A N. The

up-and-rebate options pays Al,<n at the random time o.

Remark 6.30. |By convention min () = co.
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Definition 6.31. We say a random variable 7T is a stopping time if:

(2) Foralln<N thee ent {7 <
Remark 6.32.

n} € Fn.

We say 7 is a finite stopping time if 7 < oo almost surely.

Remark 6.33. The second condition above is equivalent to requiring {z = n} € F,, for all n.
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Questi .34. Is 7 =5 a stopping time? A~ \6$ U C/LW'L Y @ Rﬁjﬂ (rCD Q %Oj - N% U%V% :
At 4
@ the first time the stock price hits U a stopping time? {
Cues ion 6.36. Is the last time the stock price hits U a stopping time? éz@g { \/
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Question 6.37. If o and T are stopping times, is 0 A T a stopping time? How about o V 77
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o Let Q\ be an adapted process, and g be a finite stopglng time.
o Consider a derivative security that | pays G, at the random timé

< ¢ TS~ Hme
2 4\ =1
Note G, Zgﬁ[pn o= nf;g g T=NY . ? W4
Let (Xo, (A )) be a self-financin portfoho and X at time n be/the wealth of this portfolio at time n.

Definition 6. 38 A self-financing portfolio with Wealth process X X is a replicating strategy [if X = G

Theorem 6.39. The security with payoﬁG (at the stopping Wwplzcated The arbztmge free price is given by

— X 1 D,G,1
{o>n} 22 E,(D,G, L{U/>i})
Remark 6.40. The only thing required for the proof of Theorem 6.39 is the fact that X, is the wealth of a self-financing portfolio if and

only if D, X,, is a P martingale. -
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o Let G be an adapted process, and ¢ be a finite stopping time.

« Note G anG 1o—p.
o Let (XO, (Ay)) be a self-financing portfolio, and X, at time n be the wealth of this portfolio at time n.

Definition 6.38. Consider a derivative security that pays G at the random time 0. A self-financing portfolio with wealth process X X is

a replicating strategy if X 8)

Remark 6.39. If a rephcatmg strategy exists, then at any time before o, the wealth of the replicating strategy must equal the arbitrage

free price V. That is, 1{n<0}§; = 1{n<0}1; m 6 Z_OQ\Z\ PN
Theorem 6.40. The security with payoff G, (at the stopping time o) can be replicated. The arbitrage free price is given by

1 -~
an o=>n} — 7En DaGal o=>n
Voliozm = 5 EnDoColirzn)

n

eorem 6.40 is the fact that X, is the wealth of a self-financing portfolio if and

Remark 6.41. The only thing required for the proof o
only if D, X,, is a P martingale.
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Proposition 6.42. The wealth of the replicating portfolio (at times before o) is uniquely determined by the recurrence relations:

btz = Ctiom < [
Xnl o>n :Gn o=n — Lo Ean .
St = Godomy * Trplloom oo,
If we write w = (W', wp41,wW") with W' = (w1, ...,wy), then we know in the Binomial model we have

Ean+1(w) = Ean+1(Wl) = ﬁXn+1(w/a 1) + an—H(w/; _1) .



As before, we will use state processes to find practical algorithms to price securities.

Ezample 6.43. Let A,U > 0. The up-and-rebate option pays the face value A at the first time the stock price exceeds U (up to maturity
time N), and nothing otherwise. Find an efficient way to compute the arbitrage free price of this option.



Proposition 6.44. Let Y = (Y',...,Y?) be a d-dimensional process such that for every n we have Yy, 11(w) = hnp1(Yn (W), wni1) for

some deterministic function h,y1. Let Ay, ..., Ay CR?, with Ay R, and define the stopping time o by
oc=min{n € {0,...,N} |V, € A,}.
Let go, ...gn be N deterministic functions on R%, and consider a security that pays G, = g,(Y,). The arbitrage free price of this security

is of the form Vi1i55n) = fn(Yn)lio>n) - The functions fy, satisfy the recurrence relation

In() =gn(y)

1
£0) = Lyeant 00 @) + =2 (5 (ha (0) + @foia (rna (9. -1)))



6.4. Optional Sampling. Consider a market with a few risky assets and a bank.

Question 6.45. If there is no arbitrage opportunity at time N, can there be arbitrage opportunities at time n < N ¢ How about at finite
stopping times?



Proposition 6.46. There is no arbitrage opportunity at time N if and only if there is no arbitrage opportunity at any finite stopping
time.



Question 6.47. Say M is a martingale. We know EM, = EM, for all n. Is this also true for stopping times?



Theorem 6.48 (Doob’s optional sampling theorem). Let 7 be a bounded stopping time and M be a martingale. Then E,M; = M, p,.



Proposition 6.49. Suppose a market admits a risk neutral measure. If X is the wealth of a self-financing portfolio and T is a finite
stopping time such that Xo =0, and X, > 0, then X, = 0.

Remark 6.50. This is simply an alternate proof of Proposition 6.46.



Question 6.51 (Gamblers ruin). Suppose N = oo. Let X,, be i.i.d. random variables with mean 0, and let S, = > Xj,. Let 7 = min{n |
Sp = 1}. (It is known that 7 < oo almost surely.) What is ES; ¢ What is imy_00 ES;AN ?



6.5. American Options. An American option is an option that can be exercised at any time chosen by the holder.

Definition 6.52. Let Gg,G1,...,G N be an adapted process. An American option with intrinsic value G is a security that pays G, at
any finite stopping time o chosen by the holder.

Ezample 6.53. An American put with strike K is an American option with intrinsic value (K — S,)7.

Question 6.54. How do we price an American option? How do we decide when to exercise it? What does it mean to replicate it?
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e Let G be an adapted process, and o be a finite stopping time. W 7'.[ 0
—

o Note G, Zn, Grnlo—p.
o Let (X0, (A,)) be a self-financing portfolio, and X,, at time n be the wealth of this portfolio at time n.

Definition 6.38. Consider a derivative security that pays G, at the random time o. A self-financing portfolio with wealth process X is

a replicating strategy if X, = G,.
Remark 6.39. If a replicating strategy exists, then at any time before o, the wealth of the replicating strategy must equal the arbitrage

free price V. That is, 1{,<o} Xn = L{n<o} Va-
Theorem 6.40. The security with payoff G, (at_the sto
1 =
an{JZn} = FEn(DaGal{ggn})
b n —

e o) can be replicated. The arbitrage free price is given by

Remark 6.41. The only thing required for the proof of Theorem 6.40 is the fact that X, is the wealth of a self-financing portfolio if and
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only if D, X,, is a P martingale.
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Proposition 6.42. The wealth of the replicating portfolio (at times before o) is uniquely determined by the recurrence relations:

Anlio=n} = GNl{o=n}
T

1
X 1 o=>n} — G 1 o=n + 1 o>n E XTL—H
) { P { } {o>n}

If we write w = (W', wp41,wW") with W' = (wy, .. ) then we know in the Binomial model we have

Ean+1(w) = Ean+1(wl) = ﬁXn-l—l(w/a 1) + (an—H(w/a _1) .
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As before, we will use state processes to find practical algorithms to price securities.

Ezample 6.43. Let A,U > 0. The up-and-rebate option pays the face value A at the first time the stock price exceeds U (up to maturity
time N), and nothing otherwise. Find an efficient way to compute the arbitrage free price of this option.
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Proposition 6.44. Let Y = (Y',...,Y?) be a d-dimensional process such that for every n we have Yy, 11(w) = hnp1(Yn (W), wni1) for

some deterministic function h,y1. Let Ay, ..., Ay CR?, with Ay R, and define the stopping time o by
oc=min{n € {0,...,N} |V, € A,}.
Let go, ...gn be N deterministic functions on R%, and consider a security that pays G, = g,(Y,). The arbitrage free price of this security

is of the form Vi1is>ny = fn(Yn)l{o=ny - The functions f, satisfy the recurrence relation

In() =gn(y)

1
£0) = Lyeant 00 @) + =2 (5 (ha (0) + @foia (rna (9. -1)))



Lecture 21 (10/20). Please enable video if you can

ol e



[-\vw

Proposition 6.44. Let Y = (Y',...,Y?) be a d-dimensional process such that for every n we have Yyi1(w) = hny1(Ya(w), wn1)| for
some deterministic function hy,,1. Let ‘11 él\’ C LR; with ANCR?, and define the stopping time o — E—

J/g—min{ne{o  NY|Y, € A,}.

Ns;%'/%-—%

and consider a security that pays G, = ¢,
9o
w)lioz=ny - The functwns fn satisfy the recurrence relation

Let go, ...gn be N deterministic functions on R
is of the form Viliozny = fn(Y,

—_—

(Y,). The arbitrage free price of this securi

In() = ox () & T M
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6.4. Optional Sampling.
Theorem 6.45 (Doob’s optional sampling theorem). Let 1 be a|bounded stopping time|and M be a martingale. Then E, = Mrn.-
——— - —

——

T
Remark 6.46. When dealing with finitely many coin tosses (]\j___<\o_o)7 bounded stopping times are the same as finite stopping times. When
dealing with infinitely many coin tosses, the two notions are different.
Remark 6.47. When N = oo and 7 is not bounded, the optional sampling theorem is still true if X, is uniformly bounded in k.
— — -

orollary 6.48. If M is a martingale and T is a bounded stopping time, then EM, = EM,.
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Consider a market with a few risky assets and a bank.

Proposition 6.49. Suppose a market admits a risk neutral measure. If X is the wealth of a self-financing portfolio and 7 is a bounded
stopping time such that Xog =0, and X, > 0, then X, = 0. That is, there cant be an arbitrage opportunity al any bounded stopping time
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Question 6.50 Suppos et &, be i.i.d. random variable

X, = 1}. (1t is known that T < oo almost surely.) What is EX,? What is|limy

- L/N é\wz \W\ WM%%’}E
BX’L/_/ i (7&0> \/\);M %ﬁ( 56 \Lw\b o M

0 — “TWWM«@ f. 4 ik s
D E X, = £ X - X - | | ﬁ
& NN p0 X@;g\ XO Q % jlai\ w\h\ ﬁm nm
Ou Q@/\w u &W g\%j%mg <} %l@ }70 Joame
TR O LT

N e Kws  T<W o,

O




|
D Wd e &K (M:MMNJ\
b

(Du ol /\'*lenﬂ} AR




6.5. American Options. An American option is an option that can be exercised at any time chosen by the holder.

Definition 6.51. Letm be an adapted process. An American option Wlth(mtmnszc valu% G is a security that pays G, at

any finite stopping time o chosen by the holder.

Ezample 6.52. An American put with strike K is an American option with intrinsic value (K — S,,)*

~—
P

Question 6.53. How do we price an American option? How do we decide when to exercise it? What does it mean to replicate it?

- — - - -



Strategy I: Let g be a finite stopping time, and consider an option with (random) maturity time g and payoff G,. Let Vo denote the
arbitrage free prlce of this option. The arbitrage free price of the American option should be Vi = max V, wheré the mw

Lz g

ver all finite stopping times o.

efinition 6.54. The optimal exercise time is a stopping time ¢* that maximizes VO"* over all finite stopping times.
=

*

Definition 6.55. An optimal exercise time ¢* is called minimal if for every optimal exercise time 77 we have o* < 7
= —

Remark 6.56. The optimal exercise time need not be unique. (The minimal optimal exercise time is certainly unique.)
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Question 6.57. Does this replicate an American option? Say o* is the optimal exercise time, and we create a replicating portfolio (with
wealth process X ) for the option with payoff Go« at time o*. Suppose an investor cashes out the American option at time 7. Can we pay
him?



Strategy II: Replication. Suppose we have sold an American option with intrinsic value G to an investor. Using that, we hedge our
position by investing in the market /bank, and let X,, be the our wealth at time n.

(1) Need X, > G, for all finite stopping times o. (Or equivalently X,, > G,, for all n.)
(2) For (at-least] one stopping time o*, need Ko = Gon.

. . . . . R
he arbitrage free price of this option is Xj.
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Question 6.57. Does Strategy I replicate an American option? Say a* is the optimal exercise time, and we create a replicating portfolio
(with wealth process X ) for the option with payoff Go+ at time o*. Suppose an investor cashes out the American option at time T. Can

we pay him? Ww\e\ﬂ
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Question 6.58. Does Strategy II yield the same price as Strategy I? Le. must Xo = max{Vy | o is a finite stopping time }?
i )
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Question 6.59. Is the wealth of the replicating portfolio (for an

Blbe

American option) uniquely determined?

W7 =6, ¥
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Question 6.60. How do you find the minimal optimal exercise time, and the arbitrage free price? Let’s take a simple example first.
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Theorem 6.61. Consider the binomial model with 0 < d < 1+ r < u, and an American option with intrinsic value G. Define
—_— T S

1 =
Vn =Gy, Vi= max{—En(DnHVnH),Gn} . ot=min{n <N|V,=G,}.
—— &~ =D, —_— _ = ==
Then V,, is the arbitrage free price, and c* is the minimal optimal exercise time. Moreover, this option can be replicated.

. =

Remark 6.62. The above is true in any complete, arbitrage free market.

Remark 6.63. In the Binomial model the above simplifies to:

1
Ty @Vnﬂ(w',i) +\QV51(&)/, :1)) ) Gn(w)} , where w = (W, wp11,w"), W' = (wi,...,wn).

[——

Va(w) = max{

TOVU ol
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Theorem 6.61. Consider the binomial model with 0 < d < 1+ r < u, and an American option with intrinsic value G. Define
—_—_— N

1 =~
= V=0, Vﬁ:max{D—En(DnHVnH),g;Q}, o =minfn <N|Va=Ga}. (Toy ’7?£>

Then V), is the arbilrage free price, and o* is the minimal optimal exercise time. Moreover, this option can be replicated.
Remark 6.62. The above is true in any complete, arbitrage free market.

Remark 6.63. In the Binomial model the above simplifies to:

(ﬁVnH(w’, 1)+ @Vppa (W' —1)),Gn(w)} , where w = (W, wp11,w"), W' = (wi,...,wn).

— Vi (w) :max{lir

—

Remark 6.64. We will prove Theorem 6.61 in the next section after proving the Doob decomposition.




Theorem 6 65. Conszder the Binomial model with 0 < d < 1+r < u, and a state process Y = (Y1,...,Y?) such that Yn+1( ) =

Pyt (Yo (W), wng1), where ' = (wi,...,wy), w= (W, md ho,hi, ..., hy are N deWns Let G, ..., gn
be N determim’stic functions, let Gy = gr(Yx), and consider an American optwn wzth intrinsic value G = (Go,G1,...,Gn). The
pre-exercise price of the option at fime nwn) where

R SR T

v =g() fory & Range(Y), fu(y) = max{gn(®): 7 (PFrs (o @) + s Gaa @) ) . Jor y € Range(¥,).

The minimal optimal exercise time is o* = mm{n \ {,\__; =gn Yn)} 1 - |
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Theorem 6.66. Suppose the interest mteWLet g be a convex function with and let G,, = g(Syp). Consider an
American option with intrinsic value Gy, = g(Sn). Then o* = N Tis an optimal exercise time! That isy it is not advantageous to exercise

this option early.

Corollary 6.67. The arbitrage free price of an American call and Furopean call are the same.
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6.6. Optimal Stopping.
Definition 6.68. We say an adapted process M is a super-martingale if E,Mpi1 < Mp.

Definition 6.69. We say an adapted process M is a sub-martingale if E,M, 1 > M,,.

Example 6.70. The discounted arbitrage free price of an American option is a super-martingale under the risk neutral measure.



Theorem 6.71 (Doob decomposition). Any adapted process can be uniquely expressed as the sum of a martingale and a predictable
process that starts at 0. That is, if X is an adapted process there exists a unique pair of process M, A such that M is a martingale, A is
predictable, Ag =0 and X = M + A.



Proposition 6.72. If X is a super-martingale, then there exists a unique martingale M and increasing predictable process A such that
X=M-A.

—
Proposition 6.73. If X is a sub-martingale, then there exists a unique martingale M and increasing predictable process A such that

X=M+A.
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6.6. Optimal Stopping.

Definition 6.68. We say an adapted process M is a super-martingale if E, M, 1 < Mn< o}\/\wj' C;W\(/{S XU[ /\/\>
= —

Definition 6.69. We say an adapted process M is a sub-martingale if E, M, 1 > ]\[(n U( I V "

Ezxample 6.70. The discounted arbitrage free price of an American option is a super-martingale under the risk neutral measure.
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Theorem 6.71 (Doob decomposition)| Any adapted process can be uniquely expressed as the sum of a martingale and a predictable
process that starts at 0. That s, if X is an adapted process there exists a unique pair of process M, A such that M is a martingale, A is
predictable, Ao =0 and X = M + A.
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Proposition 6.72. If X is a super-martingale, then there exists a unique martingale M and increasing predictable process A such that
X =M— A. T - \,_/—%—m“
. = —

_

Proposition 6.73. If X is a sub-martingale, then there exists a unique martingale M and increasing predictable process A such that
X =M+ A. e







Corollary 6.74. If X is a super-martingale and T is a bounded stopping time, then|E, X, < X a
K ) X ATAR:

— T —

Corollary 6.75. If X is a sub-martingale and 7 is a bounded stopping time, then E, X, > X A
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Theorem 6.76 (Snell). Let G be an adapted process, and define V by
S~ =
VN = GN Vn = max{EnVn+1, Gn} .
= = — e

Then V is the .g@(_z_l_lfst super-martingale for which V,, > G,. -
-
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Theorem 6.76 (Snell). Let G \be an adapted process, and define V' by

Vn = G:(\-f V, = maX{EnVn_H,Ci@} .
Then V' is the smallest super-martingale for which V, > G,,. a —
= N\ ~
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Proposition 6.77. If W is any martingale for which W,, > G,,, and for one stopping time 7 we have EW .« = EG.~, then we must
g/_,.,—-:.s.....,m\,
have Wyspn = Vispn, and Vysan is a martingale. =5 !
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heorem 6.78. Let o* = = min{n | Vo =Gn }. Then o* is them to the optin timal stopping problem| for G. Namely,

EGU* = max, EG, where the mazimum is taken over all finite stopping times o. Moreover zf EG.« = max, EG, for any other finite
stoppmg time T, we must have; >£_) —

Remark 6.79. By construction Vy«p,, is a martingale.
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Theorem 6.78. Let ¢* = min{n | V = G,}. Then ¢* is the minimal solution to the{ optimal stopping problem for G. Namely,

EGy+ = max, EG where the mammum is faken over all finite stopping times o. Moreover, if EGT* = max, EG, for any other finite
stopping time T, we must have T > a !

Remark 6.79. By construction Vy«p, is a martingale.

?%". /N %wt \) [N




944/\4 oy = E \J/MH 7\//”\>


















Theorem 6.80. For any k € {0,..., N}, let of =min{n >k |V, = G }. Then EyG,r = maxy, EyGa) where the mazimum is taken
over all finite stopping times oy for whzch ox Sk almost surely | =/
”o\“\\\
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Theorem 6.81. LetV = M — A be the Doob decomposition for V, and deﬁne T = max{n| A, =0} Then T s aﬁo/ppy_bg_tmjnd is

the largest solution to o the optzmal stopping problem for G. -
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6.7. American options (with proofs). Consider the N period binomial model with 0 <d < 1+ 7 < w.

Proposition 6.82. Any American option can be replicated. That is, consider an American option with intrinsic value G. There exists a
. —_ g
¢/ portfolio X such that:

(1) Xn/G foralln

(2) For some stopping time a we have Xox = Gy .
_
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Proposition 6.83. If X is the wealth of a replicating portfolio with >% or = Gg]. Then o* is an optimal exercise policy. Moreover, if T*
= — —_—
s any optimal exercise policy, then X« = G«
—

Corollary 6.84 (Uniqueness). If X, and Y are wealth of two replicating portfolios for an American option with intrinsic value G, then
for any optimal exercise time o* we must have 1,<o+Xp = 1pgo= Y.
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Proposition 6.83. If X is the wealth of a replicating portfolio with X,« = Go«. Then o* is an optimal exercise policy. Moreover, if T*
— - = -_ -

is any optimal exercise policy, then X« = G+
Corollary 6.84 (Uniqueness). If X, and(i// are wealth of two replicating portfolios for an American option with intrinsic value G, then
Jor any optimal exercise time o* we must have locorXn = LugoYn.
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Proposition 6.85. Let Vv = Gy, and V M} Then V,, is the arbitrage free price of the American option. That
s, the market remains an‘ﬁ"age free if we are allowed to trade an American option at price V,,.
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7. Fundamental theorems of Asset Pricing

s T T
7.1. Markets with multiple risky assets.

(1) 9=A1,.. } is a probability space representing N rolls of M-sided dies, and p is a probability mass function on 2.
The die rolls need not be i.i.d. — M

)
) Consider a financialanarket with d + 1 assetS ..., 8% (S* denotes the price of the k-th asset at time n.)
)
)

For i € {1,...,d}('S" s an adapted process (i.e. 5% is ]-' -measurable).
The 0-th asset S0 is-assumed to be a risk risk free ba’k/money market:

(a) Tet 7, 7, be an adapted process specifying the interest rate at time p.

(b) Let‘?g \Qﬂ-and = (1+r,)S). (Note S° is|predictable. \'WJLT

(c) Let D,, = (S9)~' be the discoumt fax be the iscount factor (D,, dollarsét time 0 becomes 1 dolla at tlme n)
54,

(6) Let A, ?A ..., A%) be the position at tlme 7 of an investor in each of the assets (S, ..

(7) The wealth of an investor holding these assets is glven by X,, = A S S Zl_@Al i
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7.2. First fundamental theorem of asset pricing.

Definition 7.2. We say the market is arbitrage free if for any self financing portfolio with wealth process X, we have: Xy = 0 and
Xy > 0 implies Xy = 0 almost surely. I =

—
Definition 7.3. We say P is a risk neutral measure if [P is-equivalent to P |and E (Dn41Si 1) = DyS}, for every i € {0,. .. ,d}.“

_— _—
Theorem 7.4. The market defined in Section 7.1 is|arbitrage fre )zf and only if| there exists a risk neutral measure.
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Lemma 7.5. If ”1~J is a risk neutral measure,\ then the discounted wealth of any self financing portfolio is a P-martingale

Proof that existence of a risk neutral measure implies no-arbitrage.
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Lecture 31 (11/17). Please enable your video if you can.
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Corollary 7.6. Suppose the market has a risk neutral measure_Pl, Let Viy be a Fn-measurable random variable and consider an security
that pays Vi at time N. Then V,, = D, 'E,(DnVy) is a arbitrage freg\\gm'ce at time n < N. (i.e. allowing you to trade this security in
the market with price V,, at time n kéeps the market arbitrage free).

Remark 7.7. We do not, however, know that the security can be replicated.
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Lemma 7.8. Suppose the market has no arbitrage, and X is the wealth process of a self-financing portfolio. t[f for any n, X,, =0 and
Xnt1 2 0, then we must have X, 11 = 0 almost surely.
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Lemma 7.9. Suppose we find an equivalent measu / such that whenever| A, - S,, =0, we have En(An . SnJr:%, then M
neulral measure. - -
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Lemma 7.10. Suppose p is a probability mass function such that p(w) = p1(w1)p2(w1,w2) -+ Py (w1, ..., wN). If Xpi1 is Fpy1-measurable,
then

M
E, X, 1(w) = Zﬁnﬂ(w',j)XnH(w’,j), where W= (Wi, ywn),w = (W, Wnt1,Wnils- s WN)
i=1
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Lemma De neQd—ef{veRMMZ 0Vie{l,...,M}}, and@d:ef{veRMMi>0Vi€{1,...,M}}. Let V.C RM be a subspace.
e S E—
1)\ if and only if there exists n € Q such th =1andn L
(2) fiormal vector i € Q is unique if and only if\V N Q = {0}\and \dlm(V) M—1.
\

Remark 7.12. This can be proved using the Hyperplane separation theore ed in convex analysis.
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Lecture 32 (11/19). Please enable your video if you can
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Lemma 7.11. Define Q = {v e RM |v; > 0Vie {1,.,.,M}}, and Q = {v v >0Vie{l,...,M}}.|Let V C RM beasubspac%,
_ = —_— —
S\1) ¥ 0@ = {0} if and only if there uch thd{@n ALV.
The unit normal vector i € Q is unique if and only if V. N Q = {0} im(V) =M — 1.
ne 'y riv = ) =M=

Remark 7.12. This can be proved using the Hyperplane separation theorem used in convex analysis.
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Proof of Theorem 7.4 (No arbitrage implies existence of a risk neutral measure).
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Lecture 33 (11/22). Please enable video if you can.
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7.3. Second fundamental theorem. |
Definition 7.13. A market is said to be complete if every derivative security can be hedged.

Theorem 7.14. The market defined in Sectzon 7.1 is com lete and arbztmge free_if and only if there exists a unique risk neutral measure.
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Lemma 7.15. The market is complete if and only if for every F 11 measuﬁindoivaﬂable X1, there exists a (not necessarily
Snt1

unique) f\measumble random vector A, = =(AY ..., Ad) such that X, 1 —
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Lecture 34 (11/29). Please enable video if you can.
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7.4. Examples and Consequences.

Proposition 7.16. Suppose the market model Section 7.1 is complete and arbitrage free, and let P be the unique risk neutral measure.
If& is a P martingale, then X must be the wealth of a self financing portfolio.

R A
emark 7.17. We've already seen in Lemma 7.5 that if a (not necessarily unique) risk neutral measure exists, then the discounted wealth
f any self financing portfolio must be a martingale under it.

Remark 7.18. All pricing results/formulae we derived for the Binomial model that only relied on the analog of Proposition 7.16 will hold
in complete arbitrage free markets.
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Question 7.19. Consider a market consisting of a bank with interest rate r, and two stocks with price processes S1, 82, At each time
step we flip two independent coins. The price of the i-th stock (i € {1, 2}) changes by factor Ui, or g d depending on whether the i-th coin
is heads or tails. When is this market arbztmge free? When is this market complete?

- Q
M\ go UZ b

P

.S 5/

( \ >u Z}/%o\akg
N



WO EA -, Ty o
@%w\ga\mtq*ﬁ@”\ z KPJ“/\M\A %Mg%cﬂ%
O EE ~(me, : wmg
Wanc

= (1S,






e o Bun (D e b >0 dedbe b B
T S T oy ] la sl
) Wg ot el Lﬁ b sghe o tmenbd

4 "HL o i o %MJWLL
Py € L ke ] BRE €



o oudbe
e e W\ W%

&M@W

o d4
M.y mﬂml |
4 dde

b B |
UOWL DL&; @MM@ er Q?Y/Mg "

bl die

(oo bl 4

N . >



Question 7.20. Consider now repeated rolls of a 3-sided die and for i € {1,2}, suppose S};H f” v if wnH = j. How do you find
the risk neutral measure? Find conditions when this market is complete and arbitrage free”
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8. Black-Scholes Formula

(1) Suppose now we can trade continuously in time.

(2) Consider a market with a bank and a stock, whose spot price at time ¢ is denoted by S;.

(3) The continuously compounded interest rate is r (i.e. money in the bank grows like 0;C(t) = rC(t).

(4) Assume liquidity, neglect transaction costs (frictionless), and the borrowing/lending rates are the same.

(5) In the Black-Scholes setting, we model the stock prices by a Geometric Brownian motion with parameters a (the mean return
rate) and o (the volatility).

(6) The price at time ¢ of a European call with maturity 7" and strike K is given by

c(t,x) = aN(d(T —t,z)) — Ke "T"ON(d_(T — t,z)),

where di:%ﬁ(ln(%>+<rj:%>7), N(m):\/%/_;e_fpdy.

(7) Can be obtained as the limit of the Binomial model as N — oo by choosing:
r o

" 1+—4+-%2  d=dy=1+ g
Thinom = =7 » U=unN = — = — _
b N N N " JUN N N JN



9. Recurrence of Random Walks

o Let &, be a sequence of i.i.d. coin flips with P(§, =1) = P(§, = —-1) =1/2.
o Simple random walk: S, = Y7 & (i.e. So =0, Spt1 = Sp + &nt).

Definition 9.1. The process S,, is recurrent at 0 if P(S,, = 0 infinitely often ).



Question 9.2. Is the random walk (in one dimension) recurrent at 07 How about at any other value?

Question 9.3. Say &, are i.i.d. random vectors in R? with P (&, = +e;) = ﬁ. Set Sy, = >.1 &k Is Sy, recurrent at 07



Theorem 9.4. The simple random walk in R? is recurrent for d = 1,2 and transient for d > 3.



o Let 79 = min{n | S, = 0}, be the first time S returns to 0.
o Let 1 = min{n > 79| S,, = 0}, be the first time after 7y that S returns to 0.
o Let 7441 = min{n > 7% | S,, = 0}, be the first time after 7, that S returns to 0.

Lemma 9.5. S is recurrent at 0 if and only if P(1o < 00) = 1.



Lemma 9.6. P(19 < 00) =1 if and only if Y P(S, =0) = oco.
Proof.



Theorem 9.7. P(Ss,, =0) = O(1/m%?). Consequently, the random walk is recurrent for d < 2, and transient for d > 3.



Lemma 9.8 (Sterling’s formula). For large n, we have

1
n! ~ \/27rexp(nlnn—n—|— 5)



Proof of Theorem 9.7 for d = 1:



Lecture 35 (12/1). Please enable video if you can.
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8. Black-Scholes Formula

(1) Suppose now we can trade \continuousl, time.
(2) Consider a market with a bank and a s 0se spot price at time ¢ is denoted by

(3) The continuously compound”dﬁnteres rate is r (i.e. money in the bank grows like 0; @'

(4) Assume hquldlty7 neglect transaction costs (frictionless), and the borrowing/lending rates are the same.
(5)

In the Blagk-Scholes setting, we model the stock prices by ap‘ﬂn\m‘/m’mwh parameters@ (the mean return
rate) -(6\\ the volatility).
cOF QEV WM

(6) The price at time ¢ of a European call with maturity T and strike K is given by
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9. Recurrence of Random Walks

 Let &, be a sequence of i.i.d. coin flips with P(¢, :l) =P, =-1)=1/2
o Simple random walk: S, = Y7 & (i.e. So =0, Spp1 =S, +

Definition 9.1. The process SMP(Sn = 0 infinitely often )— L
= HIINILeLy OTLe




Question 9.2. Is the random walk (in one dimension) recurrent at 0?2 How about at any other value?

Question 9.3. Say &, are i.i.d. random vectors in R? with P (&, = +e;) = ﬁ. Set Sy, = >.1 &k Is Sy, recurrent at 07
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Theorem 9.4. The simple random walk in R? is recurrent for d = 1,2 and transient for d > 3.
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o Let 79 = min{n | S, = 0}, be the first time S returns to 0.
e Let L= min{n % o = 0}, be the first time after 79 that S returns to 0.
e Let Tk+1 = mm{n > Tkm 0}, be the first_time after 7, that S returns to 0.
Lemma 9.5. S s recurrent at 0 if and only zdP(To <o0)=1.
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Lemma 9.6.

Proof.

P(19 < 00) = 1if and only if|> P(S, =0) = oco.
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Lecture 36 (12/3). Please enable video if you can
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o Let 7y = min{n > 0[S, = 0}, be the first time S returns to 0.
o Let 72 = min{n > 7 | S, = 0}, be the first time after 7; that S returns to 0.
o Let 741 = min{n > 7, | S, = 0}, be the first time after 75, that S returns to 0.

Lemma 9.5. S is recurrent at 0 if and only if P(tp < 00) =1
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Consequently, the random walk is recurrent for d<2 and transient for d>3)

heorem 9.7. W
Sw = Q W O\ A)Afvx. 2
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\\f;/emma 9.8 (Sterling’s formula). For large n, we have
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Remark 9.9. Recall the Gambler’s—ruin example (Question 6.50): Let {,, be i.i.d. random variables with mean 0, and let X,, = ST &k

=

We proved earlier EX, = 1 and limy_yoo EX Ay = 0.

Le min{n | X,, = 1}. [Theorem 9.7 proves




_1<1/2> - % ﬂ/

Theorem 9.10. Consider the Gamblers ruin example, with 7 = min{n | X,, = 1}. Then
ET = d P(r=2n=1)= (-1
T =00 an (r=2n=1)=( "

Remark 9.11. Let M, = mln{XTAk |k < n}. Then EM, = —oo. Thus, this strategy will take (on average) an infinite time before you
b Wg 0

win $1. During that time your expected maximum [oss Is —
Lemma 9.12. Let F(x) = Ex". Then)—(x =1(1-V1-2?).
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Proof of Theorem 9.10
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