Appendix A. The d-dimensional Hausdorff measure in \mathbb{R}^{d}
Let (X, d) be any metric space, $\underline{\underline{\delta}}>0, \alpha \geqslant 0$ and $H_{\alpha, \delta}^{*}$ be the outer measure defined by

Remark A.1. The function ρ_{α} above are chosen so that if $A=B(0, r) \subseteq \mathbb{R}^{d}$, then $\rho_{d}(A)=|A|$.
Definition A.2. Let $H_{\alpha}^{*}=\lim _{\delta \rightarrow 0} H_{\alpha}^{*}$.
Proposition A. 3 (From homework 2). The outer measure H_{α}^{*} restricts to a measure on the Botel σ-algebra.
Theorem A.4. If $X=\mathbb{R}^{d}$, and $\alpha=d$ then $H_{\alpha}=\lambda$ (the Lebesgue measure).

$$
\begin{aligned}
& \lambda(A)=\lambda^{*}(A)=\operatorname{im}\left\{\sum \sum \left\lvert\, \begin{array}{c}
\| I_{k} \mid \\
I I_{k}
\end{array} \frac{2 A}{}\right.\right. \\
& \left.I_{k} \text { cells }\right\} \text {. } \\
& f\left(t(A)=\lim _{600}(\operatorname{sed} \text { af } \operatorname{din} \leq 8)\right.
\end{aligned}
$$

Lemma A. 5 (Infinite version of Vitali's Covering Lemma). Let $\underline{\underline{W}} \subseteq \cup_{\alpha \in A} B\left(x_{\alpha}, r_{\alpha}\right)$, with $\sup r_{\alpha}<\infty$. There exists a countable set $\mathcal{I} \subseteq A$ such that:
(1) $\left\{B\left(x_{i}, r_{i}\right) \mid i \in \mathcal{I}\right\}$ are pairwise disjoint. (contatle)
(2) $W \subseteq \cup_{i \in \mathcal{I}} B\left(x_{i}, 5 r_{i}\right)$ and hence $|W| \leqslant 5^{d} \sum_{i \in S} B\left(x_{i}, r_{i}\right)$.

$$
(\text { Piman to fine Vidal } p \text {). }
$$

 disjoint, and $\left|U-\cup \overline{B\left(x_{i}, r_{i}\right)}\right|=0$.

u.

Pf: Lamn: fix $\delta>0$.

$$
\begin{aligned}
& \exists x \ll \quad \& B\left(x_{1}, r_{1}\right) \ldots B\left(x_{m}, \tau_{n}\right) \subseteq U \quad+\quad \tau_{i} \in(0, \delta) . \\
& \left.\quad \mid U-\bigcup_{1}^{n} \overline{B\left(x_{i}, \tau_{i}\right.}\right)|<\alpha| U\left|\quad \forall U \subseteq \mathbb{R}^{d}, \operatorname{dam}\right| U \mid<\infty
\end{aligned}
$$

if of LemaA.6: (1) Sen $|U|<\infty$.
(2) Set $U_{0}=U . \quad U_{n+1}=U_{n}-\bigcup_{1}^{m_{n}} \overline{B\left(x_{n, i}, T_{n, i}\right)} \quad$ (fomen Lema $)$.

$$
\left|u_{n+1}\right|<\alpha\left|u_{n}\right| \Rightarrow\left|u_{n}\right|<\alpha^{n}\left|u_{0}\right| \quad \underset{n \rightarrow \infty}{0}
$$

(3) Let $N=\bigcap_{1}^{\infty} u_{u} \quad$ Than $\left.U=N U\left(U \overline{U_{n}, i} \overline{B\left(x_{n}, i\right.}, r_{u, i}\right)\right)$.

If of hema: (1) $U=\bigcup_{x \in U} B\left(x, r_{x}\right) \quad \&$ chree $r_{x}<\delta$
(2) Viati $\left.\Rightarrow \exists B\left(x_{i}\right) r_{i}\right)$ ulte + painixe disj 7

$$
\begin{aligned}
U \subseteq U B\left(x_{i}, 5 r_{i}\right) & \Rightarrow|U| \leq \sum \mid B\left(x_{i}, \tau_{i}| | \cdot 5^{d}\right. \\
& \left.\Rightarrow 5_{i}|U| \leqslant \mid \bigcup_{1}^{\infty} B\left(x_{i}\right) \tau_{i}\right) \mid
\end{aligned}
$$

Far N lag, $\bigcup_{1}^{N} B\left(x_{i}, T_{i}\right) \geqslant \frac{1}{6^{2}}|u|$.

$$
\text { Sot } V=U-\bigcup_{Y}^{N} \overline{B\left(x_{i}, r_{i}\right)} \text {. }
$$

Note $|V| \leqslant\left(1-\frac{1}{b^{d}}\right)|U|_{\text {OECD }}$

Lemma A.7. $H_{d} \leqslant \lambda$.
Lemma A.f. $H_{d} \leqslant \lambda$.
Pf: $\quad f_{i x} \delta>0, \quad U \subseteq \mathbb{R}^{d}$ den.

$$
\begin{aligned}
& \leq H_{B d, \delta}(N)+\sum_{1}^{\infty} H_{d, 8}\left(\overline{B\left(x_{i}, r_{i}\right)}\right) \\
& \Rightarrow \lim _{\delta \rightarrow 0} H_{d}(u) \leqslant|u| \\
& \begin{array}{l}
\leqslant H_{d, \delta}(N)+\sum_{i}^{\infty}\left|\lambda\left(\overline{B\left(x_{i}, T_{i}\right)}\right)\right|=\underbrace{\left(H_{d, 0}(N)\right)}_{d, \delta}+|U| . \\
=0_{\left(y_{\text {m m chuk }}\right)} .
\end{array}
\end{aligned}
$$

Remark A.9. Note A need not be contained in a ball of radius $\operatorname{diam}(A) / 2$.

Eg $\quad A=$

$$
\operatorname{dian}(A)=1
$$

$$
\begin{aligned}
& \operatorname{dian}(A)=1 \\
& B \text { ant } A \& B\left(x, \frac{1}{2}\right) \quad \forall x \in \mathbb{R}^{2} .
\end{aligned}
$$

Proof of Theorem A.4. $\quad\left(H_{d}=\lambda\right)$.
\rightarrow Alowdy knor $H_{d} \leqslant \lambda$.
Renune: Coner U bug sete of diam $\leq \delta$.

$$
U \subseteq \bigcup_{1}^{\infty} E_{k .} \quad \Rightarrow|U| \leqslant \sum\left|E_{k}\right| \underset{\mid \operatorname{sig}_{\operatorname{diam}}^{\leqslant}}{\leqslant} l_{d}\left(E_{k}\right)
$$

inf over all cons $\Rightarrow|U| \leqslant H_{d, \delta}(U) \quad$ seand $\delta \rightarrow 0$.

Proposition A. 10 (Steiner Symmetrization). Let $\underline{P} \subseteq \mathbb{R}^{d}$ be a hyperplane with unit normal $\underline{\underline{\hat{n}}}$. Let $\underset{\underbrace{}}{A} \in \mathcal{L}\left(\mathbb{R}^{d}\right)$. There exists $\underline{S_{P}(A)} \in \mathcal{L}\left(\mathbb{R}^{d}\right)$ such that:

(2) $\operatorname{diam}\left(S_{P}(A)\right) \leqslant \operatorname{diam}(A)$.
(3) $\left|S_{P}(A)\right|=|A|$.

$$
P f \otimes W L .
$$

(2) fix $x \in \mathbb{R}^{A-1} \quad V_{x}(A)=\{y \mid(x, y) \in A\}$.

Sd $S_{p}(A)=\left\{\left.(x, y)\left|x \in \mathbb{R}^{n-1}, \quad\right| y\left|\leqslant \frac{1}{2}\right| V_{x}(A) \right\rvert\,\right\}$.
(3) Clealy $\rho_{p}(A)$ is s.mm alsat e_{n}^{\perp}.
(4) $\left.\left|S_{p}(A)\right|=|A| \quad \quad \quad F_{\text {unin }} / T_{\text {gun }} l_{1}\right)$
(5) $\operatorname{dian}\left(S_{p}(A)\right) \leq \operatorname{diman}(A) \quad\left(\right.$ of by fictine) $\quad\left(y_{m}\right.$ chack).

Proof of Theorem A.8 $\left(N T S . \quad|A| \leqslant\left|B\left(0, \frac{\operatorname{diam}(A)}{2}\right)\right|\right.$.
Pf: Let $\left.B=S_{e_{1}^{1}}\left(S_{e_{2}}\left(\cdots S_{e_{4}^{1}}(A)\right)\right)\right)$
Biss syman alost all condinte axies.

$$
\begin{aligned}
& \Rightarrow x \in B \Leftrightarrow-x \in B . \quad(\Rightarrow \operatorname{dim}(B) \geq 2|x|) \\
& \Rightarrow B \subseteq B\left(0, \frac{\operatorname{dian}(B)}{2}\right) \Rightarrow|B| \\
& \Rightarrow\left|B\left(0, \frac{\operatorname{dim}(B)}{2}\right)\right| \\
& \propto B\left(0, \frac{\operatorname{dim}(A)}{2}\right)
\end{aligned}
$$

