Theorem 12.26 (Sobolev embedding). If s > d/2 then $H^s(\mathbb{R}^d) \subseteq C_b(\mathbb{R}^d)$, and the inclusion map is continuous.

Rocall:
$$\|f\|_{H^{3}} = \int |f_{\delta}(\xi)|^{2} (1+|f_{\delta}|^{2})^{2} df$$
, $f_{\epsilon} = f_{\delta}(\xi^{2}) \|f_{\delta}\|_{H^{6}} < \infty f$
 $(\epsilon \ge 0)$.

$$\frac{1}{(1+|3|^2)^8}$$

(Note of the dx <
$$\infty$$
 He = 0 (re \mathbb{R}^d)

| Note of the section of \mathbb{R}^d (so \mathbb{R}^d)

| Note of the section of \mathbb{R}^d (so \mathbb{R}^d)

| Note of the section of \mathbb{R}^d (so \mathbb{R}^d)

| Note of the section of \mathbb{R}^d (so \mathbb{R}^d)

| Note of the section of \mathbb{R}^d (so \mathbb{R}^d)

| Note of the section of \mathbb{R}^d (so \mathbb{R}^d) (so \mathbb{R}^d) (so \mathbb{R}^d) (so \mathbb{R}^d)

| Note of the section of \mathbb{R}^d (so \mathbb{R}^d) (so \mathbb{R}^d) (so \mathbb{R}^d) (so \mathbb{R}^d) (so \mathbb{R}^d)

| Note of the section of \mathbb{R}^d (so \mathbb{R}^d) (so \mathbb{R}^d

(2) -> Pyx is landy in HS

Corollary 12.27. If s > n + d/2, then $H^s(\mathbb{R}^d) \subseteq C_b^n(\mathbb{R}^d)$ and the inclusion map is continuous. C" = 3 f e c" (R") | f & all on and dartines are blas LAPIN Son M-1. MU.

Proposition 12.28 (Elliptic regularity). Say
$$f \in \mathcal{S}(\mathbb{R}^d)$$
, $u \in H^2(\mathbb{R}^d)$ is such that $\lim_{|x| \to \infty} |x|^d |\nabla u(x)| = 0$ and $-\Delta u = f$, then $u \in \mathcal{S}$.

$$\Delta n = \frac{1}{2} \frac{\partial^2 n}{\partial x^2}$$
.

Note: only new $n \in \mathbb{C}^2$ to make some $x^2 - \Delta n = x^2$.

$$\Delta n = \begin{cases} 2 \\ 0 \\ 1 \end{cases}$$

$$= \begin{cases} 2 \\ 0 \\ 0 \end{cases}$$

$$P_{10} - \Delta u = \begin{cases} \Rightarrow -(\Delta u)^{2} = \begin{cases} \\ 3 \end{cases} = \begin{cases} (3) \Rightarrow +4\lambda^{2} |3|^{2} |3| \end{cases} = \begin{cases} (3) \end{cases}$$

Hour about $\int_{|3|<1}^{2}$ Recall $\hat{h}(3) = \int_{4\pi}^{2} \frac{(3)}{|3|^2}$.

Obs i:
$$f(0) = 0$$

Obs i: $f(0) = 0$

Obs 2: $f(0) = 0$

Obs 3: $f(0) = 0$

Pf of 1: knows - $f(0) = 0$

Ref. = $f(0) = 0$

Re

div Im In John of Du. in dr Service of Du.

$$- dn = \begin{cases} \Rightarrow -a dn = n \end{cases}$$

$$Tot l use din llm get $\int x \cdot f(x) dx = 0$

$$\Rightarrow 2f(0) = 0 \Rightarrow 0 \text{ bs } 2.$$$$

Ors 2:

ED.

Appendix A. The d-dimensional Hausdorff measure in \mathbb{R}^d

Let (X,d) be any metric space, $\delta > 0$, $\alpha \ge 0$ and $H_{\alpha,\delta}^*$ be the outer measure defined by

Let
$$(A, a)$$
 be any metric space, $\delta > 0$, $\alpha \geqslant 0$ and $H_{\alpha, \delta}$ be the outer measure defined by
$$H_{\alpha, \delta}^*(A) = \inf \left\{ \sum_{1}^{\infty} \rho_{\alpha}(E_i) \mid \operatorname{diam}(E_i) < \delta \text{, and } A \subset \bigcup_{1}^{\infty} E_j \right\}, \text{ where } \rho_{\alpha}(A) = \frac{\pi^{\alpha/2}}{\Gamma(1 + \frac{\alpha}{2})} \left(\frac{\operatorname{diam}(A)}{2}\right)^{\alpha}.$$

Remark A.1. The function
$$\rho_{\alpha}$$
 above are chosen so that if $A = B(0, r) \subseteq \mathbb{R}^d$, then $\rho_d(A) = |A|$.

Definition A.2. Let $H_{\alpha}^* = \lim_{\delta \to 0} H_{\alpha}^*$.

Proposition A.3 (From homework 2). The outer measure H^*_{α} restricts to a measure on the Borel σ -algebra. **Theorem A.4.** If $X = \mathbb{R}^d$, and $\alpha = d$ then $H_{\alpha} = \lambda$ (the Lebesgue measure).