Lest time: $f \in l^{\prime}, \hat{f}(\xi)=\int f(x) e^{-2 \pi i\langle x, j\rangle} d x$

$$
\begin{aligned}
& \langle f, g\rangle_{L^{2}\left(\mathbb{R}^{d}, c\right)}=\langle\hat{f}, \hat{g}\rangle_{L^{2}\left(\mathbb{R}^{d}, c\right\rangle} \quad \forall f, g \in \zeta \\
& \langle f, g\rangle=\int f \bar{g}
\end{aligned} \quad \Rightarrow\|f\|_{L^{2}}=\|\hat{f}\|_{L^{2}} . l
$$

\Rightarrow Lat $f f=\hat{f}(\xi) . \quad f: S \longrightarrow S$ is an L^{2} issei $\Rightarrow f$ extols to $m \operatorname{ismman} L^{2}$

Definition 12.20. Let $s \geqslant 0$ and define the Sobolev space of index s by

Remark 12.21. A function $f \in H^{1}$ if and only if f and all first order weak derivatives are in L^{2}. Remark 12.22. For $s<0$, one needs to define H^{s} as the completion of \mathcal{S} under the H^{s} norm.

$$
\left.\left\|f_{f^{s}}=\right\|_{1}(1+\mid \xi)^{2}\right)^{s / 2} \hat{(\xi)}
$$

Proposition 12.23. Let $s \in \underline{(0,1)}$. Then $f \in H^{s}$ if and only if $\int_{0}^{\infty} \operatorname{chf}^{\tau} \frac{\left.\tau_{h} f \|_{L^{2}}\right)^{2} d h}{h}<\infty$ for all $v \in \mathbb{R}^{d}$. Remark 12.24 . For $s=1$, we instead need $\sup _{h>0} \frac{1}{h}\left\|f-\tau_{h v} f\right\|_{L^{2}}<\infty$.
Remark 12.25. If $s \in(0,1]$, then there exists $C=C(s)$ such that $\left\|f-\tau_{h} f\right\|_{L^{2}} \leqslant C|h|^{s}\|f\|_{L^{2}}$ for all $f \in H^{s}, h \in \mathbb{R}^{d}$.

Prop: $\operatorname{Su} f:(0, \infty) \rightarrow \mathbb{R}, \quad \int_{x \in \mathbb{R}^{d}} f(|x|) d x=\int_{d} \int_{r=0}^{\infty} f(r) r^{d-1} d r$

$$
\begin{aligned}
c_{d}= & \text { sanpee aven }{ }^{\prime} \text { of } \\
& S^{d-1} \leftrightarrow R^{d} \\
& \left(S^{d-1}=\left\{x \in R^{d}| | x \mid=1\right\}\right)
\end{aligned}
$$

© Pfi (1) $S_{\text {ay }} f \in H^{s}\left(\mathbb{R}^{d}\right) \quad s \in(0,1)$
WTS $\int_{R^{\lambda}}\left(\frac{\left\|f-\tau_{h} \mid\right\|_{z}^{2}}{|h|^{2 s}}\right) \frac{d h}{\mid h^{2}}<\infty$

$$
\begin{align*}
& \text { Note } \int_{\mathbb{R}^{d}} \frac{\left\|f-\tau_{h f}\right\|_{L^{2}}^{2}}{|h|^{2 s}} \frac{d h}{|h|^{d}}=\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \frac{11-e^{-2 \pi i\langle h, \xi\rangle^{2}}}{|h|^{2 S}}|\hat{f}(\xi)|^{2} d \xi \frac{d h}{|h|^{d}} \\
& \text { (hare os shatily) } \\
& \underset{\substack{\text { s.c. } \\
\xi \in \mathbb{R}^{d}}}{\leqslant}|\hat{f(i)}|^{2}(c \int_{|h|<\delta} \frac{|h|^{2}|\xi|^{2}}{|h|^{2 s}} \frac{d h}{|h|^{d}}+\underbrace{|h| \geqslant \delta} \underbrace{|h|^{d+28}}) \tag{*}
\end{align*}
$$

$$
\begin{aligned}
& \text { (1): } \int_{|h|<8}|\xi|^{2} \frac{d h}{|h|^{d+2 s-2}}=c_{d} \int_{r=0}^{\delta}|\xi|^{2} \frac{\tau^{d-1} d \tau}{\tau^{d+2 s-2}}=c_{d}|\xi|^{2} \int_{0}^{\delta} \frac{d r}{\pi^{2 s-1}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { nale } 2 s-1<1 \Rightarrow c_{d}|\xi|^{2} \int_{0}^{\delta} \frac{d r}{r^{2 c-1}}=C|\xi|^{2}\left[r^{2-2 s}\right]_{0}^{\delta} \\
&=C \frac{|\xi|^{2}}{\delta^{2 s-2}}
\end{aligned}
$$

(2) $\int_{|h|>8} \frac{d h}{|h|}=\int_{r=\delta}^{d+2 s} \frac{d r}{r^{2 s+1}}=\int_{\alpha=\delta}^{\infty} r^{-1-2 s} d r=\left[\frac{r^{-2 s}}{(-2 s)}\right]_{\delta}^{\infty}$

$$
=\frac{1}{s_{s}^{2 s}}
$$

$$
\begin{aligned}
& F_{\operatorname{ram}} \circledast \int_{\mathbb{R}^{d}} \frac{\left\|r r_{h} f-\right\|_{2^{2}}^{2}}{\mid h^{2 s}} \frac{d h}{\|\left. h\right|^{d}} \leqslant C \int_{3 \in \mathbb{R}^{d}}|\hat{f}(\xi)|^{2}\left(\frac{|\xi|^{2}}{\delta^{2 s-2}}+\frac{1}{\delta^{2 s}}\right) d \xi . \\
& \text { Choote } \delta+|\xi|^{2}=\delta^{-2} \Leftrightarrow \delta=\frac{1}{|\beta|} \\
& \left.\leqslant C \int_{Q \xi \in \mathbb{R}^{d}} \hat{\|\left. f(\xi)\right|^{2}} \hat{2}^{2}|z|^{2 s}\right) \leq \|_{H^{s}}^{2}<\infty
\end{aligned}
$$

Theorem 12.26 (Sobolev embedding). If $s>d / 2$ then $\underline{H^{s}\left(\mathbb{R}^{d}\right)} \subseteq \underline{C_{b}\left(\mathbb{R}^{d}\right) \text {, and the inclusion map is continuous }, ~ \text {, }}$

$$
\tau_{q}\left(R^{d}\right)=L^{\infty} \cap \subset\left(R^{d}\right) .
$$

$$
f(x)=\int e^{2 \pi i\langle x, j\rangle} \hat{f}(\xi)
$$

Obs 2: f GA $x \in s=d / 2 \Rightarrow \hat{f} \in L^{\prime}$

$$
F f: \int|\hat{f}(\xi)|=\int\left(1+|\xi|^{2}\right)^{3 / 2}|\hat{f}(\xi)| \cdot \frac{1}{\left(1+|\xi|^{2}\right)^{3 / 2}} d \xi
$$

Cowely Schlts

$$
\leqslant
$$

$$
\begin{aligned}
& \|f\|_{H^{s}} \\
& (c_{d} \int_{r=0}^{\infty} \underbrace{\frac{r^{d-1} d r}{\left(1+r^{2}\right)^{s}}})^{1 / 2}
\end{aligned}
$$

Nole $\frac{r^{d-1}}{\left(1+r^{2}\right)^{s}} \approx \frac{1}{r^{2 s-d+1} \quad(r \text { lange })}$

$$
s>\frac{d}{2} \Leftrightarrow \underbrace{2 s-d+1>+1} \Rightarrow \int_{r=0}^{\infty} \frac{d r r^{d-1}}{\left(1+r^{2}\right)^{s}}<\infty
$$

$$
\begin{aligned}
& \text { Q E } D \\
& \mu \perp \lambda \\
& \lim _{r \rightarrow 0} \frac{\mu(B(x, r))}{|B(x, r)|}=0 \lambda \text { a.e. }
\end{aligned}
$$

