### 11.3. Change of variables.

Theorem 11.20. Let $U, V \subseteq \mathbb{R}^{d}$ be open and $\varphi: U \rightarrow V$ be $\underline{C^{1}}$ and bijective. If $f \in L^{1}(V)$, then $\int_{V} f d \lambda=\int_{U} f \circ \varphi|\operatorname{det} \nabla \varphi| d \lambda$.
The main idea behind the proof is as follows: Let $\mu(A)=\lambda(\varphi(A))$
Lemma 11.21. $\mu$ is a Borel measure and $\int_{U} f \circ \varphi d \mu=\int_{V} f d \lambda$. Lemma 11.22. $\mu \ll \lambda$
Lemma 11.23. $D^{(x)}=\operatorname{det} \nabla\left(\hat{\text { f })}\right.$ where $\underline{D \mu(x)}=\lim _{r \rightarrow 0} \frac{\mu(B(x, r))}{|B(x, r)|}$.
Proof of Theorem 11.20. Follows immediately from the above Lemmas.


Proof of Lemma 11.21
Only NTS $\mu$ is a Bead meas. ( $\mu$ is cartaing a mers)
OnynTs $\forall A \in \&(U), \quad \varphi(A) \in \&(V)$.
Nole (1) $\sum=\{A \mid \varphi(A) \in 83(V)\}$ is a $r$-alg.
(2) $\sum 2$ all of ats ( $\Rightarrow$ al daxaed \& ladd cols)

$$
\Rightarrow \quad 2 \geq B(u) \quad a E D .
$$

Proof of Lemma 11.22 NTS $\mu \ll \lambda$. het $A \subseteq U,|A|=0, \operatorname{NTS}|\varphi(A)|=0$
ETs $\forall A K \subseteq U$ opt, $\quad \lambda(k)=0 \Rightarrow|\varphi(k)|=0$
Sog $|k|=0$. Pirk $\varepsilon>0, \quad$ Find $\quad W \supseteq K$ dpen $\quad \partial \quad|\omega|<\varepsilon$ \& $\bar{W} \subseteq U \& \underset{\sim}{c}$ is opt.
Note: $\bar{W}$ opt $\Rightarrow \sin _{x \in \bar{W}}|\nabla \varphi(x)|=c<\infty$.

$$
\begin{array}{rlr}
\Rightarrow|\varphi(x)-\varphi(y)| & \stackrel{M V T}{=}|D \varphi(\xi)(x-y)| \leqslant c|x-y| & \left(\forall x, y \in t_{0}\right) \\
& \left(\uparrow \text { ravly warkes } \frac{1}{\omega} \bar{\omega}\right. \text { is contrex). } & \text { sance convex sulust } \\
& \text { of } \bar{\omega}
\end{array}
$$

(If $\bar{W}$ is nat connex, Cinex $\bar{W}$ by $N$ Balls (each oplly contiontion $l$ ). $\lim _{i \text { inmen }}^{\longrightarrow} U_{s e}$ the MVT in each vaal \& yt $|\varphi(x)-\varphi(y)| \leq \underline{N c}|x-y|$.)

Pick fall|s $B\left(x_{i}, r_{i}\right) \neq K \subseteq \bigcup_{1}^{N} B\left(x_{i}, r_{i}\right)$ \& $B\left(x_{i}, 3 r_{i}\right) \subseteq \overline{\underline{W}}$

$$
\begin{aligned}
& \left.\left.\left|\bigcup_{1}^{N} B\left(x_{i}, T_{i}\right)\right|<\varepsilon \Rightarrow \text { Vitali } \exists \text { adisis shoust } \quad K \subseteq \bigcup_{1}^{M} B\left(x_{i}\right)=3 T_{i}\right) \& \sum_{1}^{M} \mid B\left(x_{i}\right)_{i} \tau_{i}\right) \mid \\
& \Rightarrow|\varphi(k)| \leqslant \sum_{i}^{M}\left|\varphi\left(B\left(x_{i}, r_{i}\right)\right)\right| \leqslant \sum_{i}^{M} c^{d}\left|B\left(x_{i}, \beta T_{i}\right)\right| \\
& \leqslant \cos \cdot 3^{d} \\
& \text { QED }
\end{aligned}
$$

Proof of Lemma 11.23 NTS $\quad D \mu(x)=\lim _{x \rightarrow 0} \frac{\mid(B(x, \uparrow))}{|B(x, r)|}=|\operatorname{det} \nabla \varphi(x)|$
(1) If $T: R^{d} \rightarrow R^{d}$ is linear knors $|T(A)|=|\operatorname{ddt} T||A|$
(2) Pick $x_{0} \in U$, Gee I: $\nabla \varphi\left(x_{0}\right)$ is inv.

Using (1) can W.L. ussume $\nabla \varphi\left(x_{0}\right)=I \quad$ (Id madaix).

$$
\begin{aligned}
& A l \text { es, } W L, \quad x_{0}=0 \& \quad \varphi(0)=0 \\
& \Rightarrow|\varphi(x)-x|<\varepsilon|x| \quad \forall x \text { sinall. }
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \forall r \quad \text { suall, } & \varphi(B(0, r)) \\
\qquad \overline{\lim }_{r \rightarrow 0} & \frac{|\varphi(B(0, r))|}{|B(0, r)|} \leqslant(1+\varepsilon)^{d} \\
& \leqslant r)
\end{aligned}
$$

Laser bod: Iur fu than. $\varphi^{-1}$ is $C^{\prime}$ (moar 0 ).
Inr contrimts $\Rightarrow B\left(0, \frac{r}{1+\varepsilon}\right) \subseteq \varphi(B(0, r))$

$$
\Rightarrow \lim _{x \rightarrow 0} \frac{|\varphi(B(0, \tau))|}{|B(0, \tau)|} \geqslant \frac{1}{(1+\tau)^{\alpha}}
$$

$$
\varepsilon \text { is ant } \Rightarrow \lim _{r \rightarrow 0} \frac{|\varphi(B(0, r))|}{|B(0, r)|}=1
$$

Case 2: $\nabla \varphi\left(x_{0}\right)$ mad inv.
(Upper bed pf sill works \& sinus sametirg small). Please duct.

