hast time: Thu: { EL(1) then $\overline{\forall} \times \in \mathbb{R}^d$ $f(x) = \lim_{x \to 0} \frac{1}{|B(x, m)|} \int f(y) dy$ hast time: Vitali. If WG UB(xi, Ti), the IS $\mathbb{B}(X_{n_{k}}, \tau_{n_{k}}) \longrightarrow \mathbb{B}(X_{n_{k}}, \tau_{n_{k}})$ \mathbb{D} isjoint $\mathcal{F} W \subseteq \bigcup_{i}^{k} \mathbb{B}(X_{n_{i}}, \mathcal{F}_{n_{i}})$ $(\gg |W| \leq \frac{1}{2} \geq |\mathcal{R}(X_{M_{i}}, T_{M_{i}})|)$

Definition 11.5 (Maximal function). Let
$$\mu$$
 be a finite (signed) Borel measure on \mathbb{R}^{d} . Define the maximal function of μ by

$$M\mu(x) = \sup_{r>0} \frac{|\mu|(B(x,r))|}{|B(x,r)|}$$
Froposition 11.6. $M\mu \in L^{1,\infty}$, and $[M\mu > d] \leq \frac{3^{d}}{\alpha} ||\mu||$.
Corollary 11.7. If $f \in L^{1}(\mathbb{R}^{d})$, then $|\{Mf > \alpha\}| \leq \frac{3^{d}}{\alpha} ||f||_{L^{1}}$.
We that $f \in L^{1} \implies M \downarrow \in L^{1} \And [M \downarrow] \subseteq C ||\downarrow|_{L^{1}} = C ||\downarrow|_{L^{1}}$.
 $(Iwvs \text{ for } H_{hi} \text{ is false})$
 $f \in L^{1} \implies \forall \alpha \mid \{\Re_{H} = \alpha\} \mid \leq 4 \downarrow L^{1} \end{gathered}$

$$\int M \downarrow [L] = C ||\downarrow|_{L^{1}} =$$

Have $|K| \leq \left[\bigcup_{i=1}^{M} B(x_{i}, 3r_{x_{i}}) \right] \leq 3^{d} \geq |B(x_{i}, 7x_{i})|$ $\stackrel{\text{(*)}}{\leq} \frac{3}{\sqrt{2}} \sum_{x_{i}} M(B(x_{i}, \pi_{x_{i}}))$ $\frac{(disj)}{\alpha} = \frac{3}{\alpha} \mu \left(\bigcup_{i=1}^{N} B(x_{i}, \tau_{i}) \right)$ $\leq \|\|\mathbf{h}\| \|_{X}^{1}$ QED.

Proposition 11.8. If
$$f \in L^{1}(\mathbb{R}^{d})$$
, then $\lim_{r \to 0} \frac{1}{|B(x,r)|} \int_{|y-x| < r} |f(y) - f(x)| \, dy = 0$ almost everywhere.
Remark 11.9. This immediately implies Theorem 11.3.
Thum (Lelugre) $\forall x$, $f(x) = \lim_{n \to 0} \frac{1}{|B(x,r)|} \int_{B(x,r)} f(y) \, dy$.
 $\Rightarrow P_{f}$ strategy () Prove the for mile fore. (e.g. etc. for).
(2) $\forall f \in L$, write $f = g$ th, $g = mile$
 $\Rightarrow (3) Obtain a mile form)$ by for h.

 $\begin{aligned} & \mathcal{F}_{f}: \ hot \quad \mathcal{S}_{f}(x) = \lim_{x \in Y \to 0} \frac{1}{|B(x,r)|} \int_{B(x,r)} |f(x) - f(y)| \ dy \end{aligned}$

O Clearly $d \in ds$, $-\Omega \downarrow (x) = O \forall x$ (2) HE>O, Egole & hell + f=gth & Ihll, < E. $\exists -\alpha f(x) = -\alpha h(x) = \lim_{x \to 0} \frac{1}{|B(x,v)|} \int \frac{1}{|B(x,v)|} dy$ $\leq |h(x)| + |Mh(x)|$

 $\Rightarrow \forall \alpha > 0, | 252 | > \alpha \} \leq | 2 | h | m h$ $\leq \left| \left\{ |h| > \frac{\kappa}{2} \right\} + \left| \left\{ Mh > \frac{\kappa}{2} \right\} \right|$ $\begin{aligned} & \leq 2 \| \| \|_{L^{1}} + \frac{2 \cdot 3}{\alpha} \| \| \|_{L^{1}} \leq \frac{C}{\alpha} \| \| \|_{L^{1}} \\ \Rightarrow \forall \alpha > 0, \quad |\{ 22 \} > \alpha] | \leq \frac{C \epsilon}{\alpha} \quad (\epsilon \ is \ anb) \end{aligned}$ $\begin{aligned} & \Rightarrow |\{ 2 \mid 2 | > \alpha] | = 0 \quad \forall \alpha > 0. \quad \Rightarrow |2 | = 0 \quad \alpha.e. \\ & \varphi \in A \end{aligned}$

Corollary 11.10. If $\mu \ll \lambda$ is a finite signed measure, then the Radon-Nikodym derivative is given by $\frac{d\mu}{d\lambda} = \lim_{r \to 0} \frac{\mu(B(x,r))}{|B(x,r)|}$.

 ${\it Remark}$ 11.11. Will use this to prove the change of variables formula.

 $^{\sim}$ Let's now deal with the second fundamental theorem of calculus:

Question 11.12. Does $f: [0,1] \to \mathbb{R}$ differentiable almost everywhere imply $f' \in L^1$? Question 11.13. Does $f: [0,1] \to \mathbb{R}$ differentiable almost everywhere, and $f' \in L^1$ imply $f(x) = \int_0^x f'? (N_v \to (M v \mid v))$ $\int f' = f(b) - f(a), \quad (f' \rightarrow R.int)$ $= N0: Eg \quad f(x) = f'(x) \quad x \in (0, 1]$ = 0

Definition 11.14. We say $f: \mathbb{R} \to R$ is absolutely continuous if for every $\varepsilon > 0$ there exists $\delta > 0$ such that $\sum_{i=1}^{N} |x_i - y_i| < \delta \Longrightarrow \sum_{i=1}^{N} |f(x_i) - f(y_i)| < \varepsilon$.

Remark 11.15. Any absolutely continuous function is continuous, but not conversely.