Last time:
$$\int_{0}^{\infty} (x) = \langle f, e_{m} \rangle = \int_{0}^{\infty} f(x) e^{-2\pi i m x} dx$$

Thintin: fastur deany of $\int_{0}^{\infty} \infty$ Better wightly of f .

 $\int_{0}^{\infty} f(x) = \langle f(x) \rangle = 0$
 $\int_{0}^{\infty} f(x) = \langle f(x) \rangle = \langle f(x) \rangle = 0$
 $\int_{0}^{\infty} f(x) = \langle f(x) \rangle = \langle f(x) \rangle = 0$
 $\int_{0}^{\infty} f(x) = \langle f(x) \rangle = \langle f(x) \rangle = 0$
 $\int_{0}^{\infty} f(x) = \langle f(x) \rangle = \langle f(x) \rangle = \langle f(x) \rangle = 0$
 $\int_{0}^{\infty} f(x) = \langle f(x) \rangle = \langle f(x) \rangle = \langle f(x) \rangle = 0$
 $\int_{0}^{\infty} f(x) = \langle f(x) \rangle = \langle f(x) \rangle = \langle f(x) \rangle = 0$
 $\int_{0}^{\infty} f(x) = \langle f(x) \rangle = \langle f(x) \rangle = \langle f(x) \rangle = 0$
 $\int_{0}^{\infty} f(x) = \langle f(x) \rangle = \langle f(x) \rangle = \langle f(x) \rangle = 0$
 $\int_{0}^{\infty} f(x) = \langle f(x) \rangle = \langle f(x) \rangle = \langle f(x) \rangle = 0$
 $\int_{0}^{\infty} f(x) = \langle f(x) \rangle = \langle f(x) \rangle = \langle f(x) \rangle = 0$
 $\int_{0}^{\infty} f(x) = \langle f(x) \rangle = \langle f(x) \rangle = \langle f(x) \rangle = 0$
 $\int_{0}^{\infty} f(x) = \langle f(x) \rangle = \langle f(x) \rangle = \langle f(x) \rangle = 0$
 $\int_{0}^{\infty} f(x) = \langle f(x) \rangle = \langle f(x) \rangle = \langle f(x) \rangle = 0$
 $\int_{0}^{\infty} f(x) = \langle f(x) \rangle = \langle f(x) \rangle = \langle f(x) \rangle = 0$
 $\int_{0}^{\infty} f(x) = \langle f(x) \rangle = \langle f(x) \rangle = \langle f(x) \rangle = 0$
 $\int_{0}^{\infty} f(x) = \langle f(x) \rangle = \langle f(x) \rangle = \langle f(x) \rangle = 0$
 $\int_{0}^{\infty} f(x) = \langle f(x) \rangle = \langle f(x) \rangle = \langle f(x) \rangle = 0$
 $\int_{0}^{\infty} f(x) = \langle f(x) \rangle = \langle f(x) \rangle = \langle f(x) \rangle = 0$
 $\int_{0}^{\infty} f(x) = \langle f(x) \rangle = \langle f(x) \rangle = \langle f(x) \rangle = 0$
 $\int_{0}^{\infty} f(x) = \langle f(x) \rangle = \langle f(x) \rangle = \langle f(x) \rangle = 0$
 $\int_{0}^{\infty} f(x) = \langle f(x) \rangle = \langle f(x) \rangle = \langle f(x) \rangle = 0$
 $\int_{0}^{\infty} f(x) = \langle f(x) \rangle = \langle f(x) \rangle = \langle f(x) \rangle = 0$
 $\int_{0}^{\infty} f(x) = \langle f(x) \rangle = \langle f(x) \rangle = \langle f(x) \rangle = 0$
 $\int_{0}^{\infty} f(x) = \langle f(x) \rangle = \langle f(x) \rangle = \langle f(x) \rangle = 0$
 $\int_{0}^{\infty} f(x) = \langle f(x) \rangle = \langle f(x) \rangle = \langle f(x) \rangle = 0$
 $\int_{0}^{\infty} f(x) = \langle f(x) \rangle = \langle f(x) \rangle = \langle f(x) \rangle = 0$
 $\int_{0}^{\infty} f(x) = \langle f(x) \rangle = \langle f(x) \rangle = \langle f(x) \rangle = 0$
 $\int_{0}^{\infty} f(x) = \langle f(x) \rangle = \langle f(x) \rangle = \langle f(x) \rangle = 0$
 $\int_{0}^{\infty} f(x) = \langle f(x) \rangle = \langle f(x) \rangle = \langle f(x) \rangle = 0$
 $\int_{0}^{\infty} f(x) = \langle f(x) \rangle = \langle f(x) \rangle = \langle f(x) \rangle = 0$
 $\int_{0}^{\infty} f(x) = \langle f(x) \rangle = \langle f(x) \rangle = \langle f(x) \rangle = 0$
 $\int_{0}^{\infty} f(x) = \langle f(x) \rangle = \langle f(x) \rangle = \langle f(x) \rangle = 0$
 $\int_{0}^{\infty} f(x) = \langle f(x) \rangle = \langle f(x) \rangle = \langle f(x)$

Definition 10.37. For $s \ge 0$, let $H_{per}^s \stackrel{\text{def}}{=} \{ f \in L^2 \mid ||f||_{H^s} < \infty \}$, where $||f||_{H^s}^2 = \sum (1+|n|)^{2s} |\hat{f}(n)|^2$.

Remark 10.38. H^s is essentially the space of L^2 functions that also have s weak derivatives" in L^2 .

Theorem 10.39 (1D Sobolev Embedding). If $s > \frac{1}{2}$ and $H_{per}^s \subseteq C_{per}([0,1])$ and the inclusion map is continuous. Remark 10.40. Need $s > \frac{1}{2}$. The theorem is false when s = 1/2. (& "s" weak beinties in 12) Remark 10.41. In d dimensions the above is still true if you assume s > d/2. Remark 10.42. More generally one can show for $\alpha \in (0,1)$, $s = \frac{1}{2} + n + \alpha$, $H_{per}^s \subseteq C^{p,\alpha}$. Note: High c is = factor deray of (f(n)) as n -> 0. 1 = Thun + Industrien => $8 > M + \frac{1}{2}$ than $H^S \subseteq C_{per}^{'M}$ (2 the inel map is ets)

Pf of ID Solater. LE HS , 5 > 1/2. Want $f \in C_{per}$ 2 $||f||_{\infty} \leq C ||f||_{H^{3}}$, for some const C(1) Will show k is do. Note Ham $f(x) = \sum_{i=1}^{n} f(x_i) e^{2\pi i n x_i}$ in L^2 . (i.e. $\sum f(a) e^{2\pi i n x}$ conress in $\sum_{k=1}^{\infty} f(a) = \sum_{k=1}^{\infty} f(a) = \sum_{k=1}^{\infty$ Claim: If fe Hc (s > /2), Hun Z J(n) e zzinx com min

Por claim: Weinstrass: Emergh to show
$$Z$$
 If CM $< D$ (Note: $\{E, Z^2 = Z\}$ If CM $= Z$ If CM

 $\leq \left(\frac{1}{2} \left(\frac{1}{1+|\alpha|} \right)^{2s} \right)^{1/2} \cdot \left\| \frac{1}{1+|\alpha|} \right\|_{H^{s}}$

Theorem 10.43 (1D Sobolev embedding). If $s \geq \frac{1}{2} - \frac{1}{2n}$, then $H_{per}^s \subseteq L^{2n}$ and the inclusion map is continuous. Remark 10.44. The above is true for $s = \frac{1}{2} - \frac{1}{p}$ for some $p \in [1, \infty)$ but our proof won't work. $f \in H^S$, $S > \frac{1}{2} - \frac{1}{2\eta} \Rightarrow \int |\xi|^{2\eta} < \infty$ Why is "IF" stuff verful." (hast Q on the neber HW) 2 → ∞ him V.C. Elflyz €12 is not cot. $H_{\text{fur.}} \subseteq L^2$. Claim: $\{\{\{\epsilon\}^2 \mid \|\xi\|_{H^1} \leq 1\}\} \subseteq L^2$ is relatively

11. Differentiation

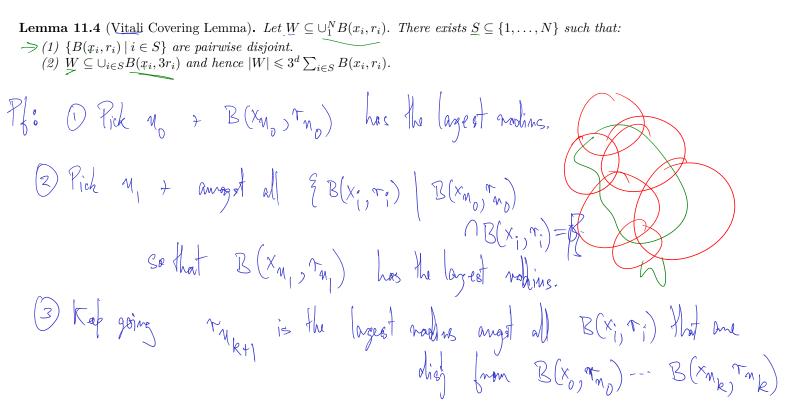
11.1. Lebesgue Differentiation.

Theorem 11.1 (Fundamental theorem of Calculus 1). If f is continuous and $F(x) = \int_0^x f(t) dt$, then F is differentiable and F' = f.

Theorem 11.2 (Fundamental theorem of Calculus 2). If f is Riemann integrable, and $\underline{F'} = f$, then $\underline{\int_a^b f = F(b)} \not \otimes F(a)$. Our goal is to generalize these to Lebesgue integrable functions.

Theorem 11.3 (Lebesgue Differentiation). If $f \in L^1(\mathbb{R}^d)$, then for almost every $x \in \mathbb{R}^d$ we have $\frac{1}{|B(x,\varepsilon)|} \int_{B(x,\varepsilon)} f d\lambda = f(x)$

$$\lim_{\epsilon \to 0} \frac{1}{|B(x,\epsilon)|} \int_{B(x,\epsilon)} dx \xrightarrow{a.e} \int_{\{x\}} (x)$$
Note: If $d=1$, $f \in L'(R)$, $f=\int_{0}^{\pi} f$, $\lim_{h\to 0} \frac{f(\pi+h)-F(x-h)-\lim_{h\to 0} \frac{\pi+h}{2h}}{h^{2}} \int_{0}^{\pi} h$



(4) Claim the is the desimal calction.
(a) clearly $B(x_{n_0}, x_{n_0}) , B(x_{n_1}, x_{n_1}) ---$ and disj by constr. (b) Pick army B(x, ri). which is vist amongst) $\Rightarrow B(x_{n_k}, 3\tau_{n_k}) \supseteq B(x_i, \tau_i)$ $\Rightarrow \bigcup_{k} B(x_{n_k}, 3\tau_{n_k}) \supseteq \bigcup_{k} B(x_i, \tau_i) \supseteq \bigcup_{k} QED.$

