$X = [0, 1], \quad f \in \mathcal{L}(X), \quad f(m) = \langle f_{\mathcal{H}} e_{\mathcal{H}} \rangle.$ $\langle b,g \rangle = \left(fg \right)$ $, c_{M}(x) = e^{2\pi i M x}$ (D_N - Dinlet kml Not on AI) $S_N = \frac{N}{2} f(m) e_m$ SNF= DN × F $T_N f = F_N \star f$ $(F_N \to f_{ejer} Kannal$ ang om AI).The I S CM $\rightarrow \forall \downarrow \in [1, \omega)$, $\forall_N \downarrow \longrightarrow \downarrow m \downarrow^{\dagger}$, Owther ally \Rightarrow $S_{NE} \rightarrow f$ in L^2 (f = 2.1).

Theorem 10.28. If $p \in (1, \infty)$, $f \in L^p$ then $S_N f \to f$ in L^p . $(p \neq l)$ *Proof.* The proof requires boundedness of the Hilbert transform and is beyond the scope of this course. **Theorem 10.29.** If $f \in L^\infty$ and is Hölder continuous at x with any exponent $\alpha > 0$, then $S_n f(x) \to x$. *Proof.* On homework.

Remark 10.30. If \underline{f} is simply continuous at x, then certainly $\sigma_n f(x) \to f(x)$, but $S_n \underline{f}(x)$ need not converge to f(x). In fact, for almost every continuous periodic function, $S_N f$ diverges on a dense $\underline{G_{\delta}}$.

 \square

Q: $f \in L^{\infty}$, Must $S_{NF} \xrightarrow{L^{\infty}} f^{2}$ (NO. S_{NF} is $ds \neq N$ $so f \in L^{\infty}$, Must $S_{NF} \xrightarrow{L^{\infty}} f^{2}$ (NO. S_{NF} is $ds \neq N$ so f f is not obs $Q: f \in C(\Gamma O, \Pi)$ (cts twindue) (S_{NF}) $\neq s f in L^{\infty}$). Q: { E C (to, 1]) (cts pairodre) for Must (SNF) ~ }

The next few results establish a connection between the regularity (differentiability) of a function and decay of its Fourier coefficients.

Theorem 10.31 (Riemann Lebesgue). Let $\underline{\mu}$ be a finite measure and set $\hat{\mu}(n) = \int_0^1 \overline{e_n} d\mu$. If $\mu \ll \lambda$, then $(\hat{\mu}(n)) \to 0$ as $n \to \infty$. **Theorem 10.32** (Parseval's equality). If $f \in L^2([0,1])$ then $\|\hat{f}\|_{\ell^2} = \|f\|_{L^2}$.

Intrition. More diff a for is
$$-2$$
 faster decay of Forier coefficients.
 $f(w) = \langle f(w) = \langle f(w) = f(w) dx \rangle$
 $f(w) = \langle f(w) = \langle f(w) dx \rangle$
 $f(w) = \langle f(w) = f(w) dx \rangle$
 $f(w) = \langle f(w) = f(w) dx \rangle$
 $f(w) = \langle f(w) = f(w) dy dx \rangle = \langle f(w) dx \rangle$
 $f(w) \in \ell^{\infty} \ll |f(w)| = |f| e^{-2\pi i mx} dy (x)| \leq \mu([0, 1])$

m

$$\begin{aligned} & \label{eq:results} \begin{split} & \end{tabular} \begin{array}{l} & \end{tabular} & \end{tabular$$

 P_{d} af Panseval: $f \in \mathcal{E}^2$. NTS $\|f\|_{L^2} = \|f\|_{p^2}$ More generally, $bg \in L^2$, then $\leq bg^2_{L^2} = \langle \hat{b}, \hat{g}^2 \rangle_{\ell^2}$ $\mathcal{R}: \langle e_n, e_m \rangle = \delta_{m,n}$ $\Rightarrow \langle S, \hat{b}, S, g \rangle = \sum_{n=1}^{N} \widehat{f}(n) \widehat{g}(n)$ $\stackrel{N}{=} \sum_{n=1}^{N} \widehat{f}(n) \widehat{g}(n)$ $S_{N} = \frac{1}{2} + \frac{1}{2$

Question 10.33. What are the Fourier coefficients of f'?

$$f(x) = \sum_{-\infty}^{\infty} f(u) e_{n}(x) = \sum_{-\infty}^{\infty} f(u) e^{2\pi i n x}$$

$$f_{new} = \sum_{-\infty}^{\infty} f(u) e_{n}(x) = \sum_{-\infty}^{\infty} f(u) e^{2\pi i n x}$$

$$\Rightarrow \int \left(\int_{-\infty}^{\infty} f(u) - \frac{2\pi i n x}{2\pi i n x} e^{2\pi i n x} - \frac{2\pi i n x}{2\pi i n x} e^{2\pi i n x} e^{2\pi i n x} - \frac{2\pi i n x}{2\pi i n x} e^{2\pi i n x} - \frac{2\pi i n x}{2\pi i n x} e^{2\pi i n x$$

Definition 10.37. For $\underline{s} \ge 0$, let $\underline{H_{per}^{s}} \stackrel{\text{def}}{=} \{ \underline{f} \in \underline{L}^{2} \mid \|\underline{f}\|_{H^{s}} < \infty \}$, where $\|\underline{f}\|_{H^{s}}^{2} = \sum_{i=1}^{i} (\underline{1+|n|}) \stackrel{2s}{=} |\underline{\hat{f}(n)}| \stackrel{2s}{=} .$ (So $\overline{L^{2}} \leftarrow C_{per}(\underline{r}, \underline{r}, \underline{r},$