


Theorem 10.28. If p ∈ [1, ∞), f ∈ Lp then SN f → f in Lp.

Proof. The proof requires boundedness of the Hilbert transform and is beyond the scope of this course. �
Theorem 10.29. If f ∈ L∞ and is Hölder continuous at x with any exponent α > 0, then Snf(x) → x.

Proof. On homework. �
Remark 10.30. If f is simply continuous at x, then certainly σnf(x) → f(x), but Snf(x) need not converge to f(x). In fact, for
almost every continuous periodic function function, SN f diverges on a dense Gδ.



The next few results establish a connection between the regularity (differentiability) of a function and decay of its Fourier
coefficients.

Theorem 10.31 (Riemann Lebesgue). Let µ be a finite measure and set µ̂(n) =
� 1

0 en dµ. If µ � λ, then (µ̂(n)) → 0 as n → ∞.

Theorem 10.32 (Parseval’s equality). If f ∈ L2([0, 1]) then �f̂��2 = �f�L2 .









Question 10.33. What are the Fourier coefficients of f �?



Definition 10.34. We say g is a weak derivative of f if �f, ϕ�� = −�g, ϕ� for all ϕ ∈ C∞
per([0, 1]).

Proposition 10.35. If f ∈ L1 has a weak derivative f � ∈ L1, then (f �)∧(n) = 2πinf̂(n).

Corollary 10.36. If f ∈ L2 has a weak derivative f � ∈ L2, then
�

[(1 + |n|)|f̂(n)|]2 < ∞.



Definition 10.37. For s � 0, let Hs
per

def= {f ∈ L2 | �f�Hs < ∞}, where �f�2
Hs =

�
(1 + |n|)2s|f̂(n)|2s.

Remark 10.38. Hs is essentially the space of L2 functions that also have s “weak derivatives” in L2.

Theorem 10.39 (1D Sobolev Embedding). If s > 1
2 and Hs

per ⊆ Cper([0, 1]) and the inclusion map is continuous.

Remark 10.40. Need s > 1
2 . The theorem is false when s = 1/2.

Remark 10.41. In d dimensions the above is still true if you assume s > d/2.

Remark 10.42. More generally one can show for α ∈ (0, 1), s = 1
2 + n + α, Hs

per ⊆ Cn,α.


