Definition 10.12. (φ_{n}) is an approximate identity if: (1) $\varphi_{n} \geqslant 0,(2) \int_{\mathbb{R}^{d}} \varphi_{n}=1$, and (3) $\forall \varepsilon>0, \lim _{n \rightarrow \infty} \int_{\{|y|>\varepsilon\}} \varphi_{n}(y) d y=0$.
Example 10.13. Let $\varphi \geqslant 0$ be any function with $\int_{\mathbb{R}^{d}} \varphi=1$, and set $\varphi_{\varepsilon}^{(X)=\frac{1}{\varepsilon^{d}} \varphi\left(\frac{x}{\varepsilon}\right) .} \quad(\varepsilon \rightarrow 0)$
Example 10.14. $\underline{G}_{t}(x)=\left(\underline{2 \pi t)^{-d / 2}} \exp \left(-|x|^{2} /(2 t)\right)\right.$, for $x \in \mathbb{R}^{d}$.

Proposition 10.15. If $p \in[1, \infty), f \in L^{p}$, and $\left(\varphi_{n}\right)$ is an approximate identity, then $\varphi_{n} * f \rightarrow f_{\text {in }} L^{p}$.
Remark 10.16. For $p=\infty$ the above is still true at points where f is continuous.
Rank: Vagal lecanse (fran th) we tenor if $\varphi_{n} \in C_{c}^{\infty} \Rightarrow \varphi_{n} * f \in C^{\infty}$
Prof Pant.

$$
\begin{aligned}
& \left.\varphi_{n} * f(x)-f(x)=\int_{R^{\lambda}} \varphi_{n}(y) f(x-y)-f(x)\right] d y \quad\left(\because \int \varphi_{m}=1\right) \\
& f-f\left\|_{\phi}=\right\| \int_{R^{\lambda}}=d y\left\|_{p} \leqslant \int_{y \in \mathbb{R}^{\lambda}} \varphi(y)\right\| f(\cdot-y)-f(\cdot) \|_{L^{d}} d y
\end{aligned}
$$

Let $\tau_{y} f(x)=f(x-y) \Rightarrow\left\|\varphi_{n} x f-f_{p_{p}} \leq \int_{y \in \mathbb{R}^{\prime}} \varphi_{n}(y)\right\| \tau_{y} f-f \| p d y$

$$
\begin{aligned}
& \forall \delta>0,1 \ni \varepsilon>0 \Rightarrow|g|<\varepsilon \Rightarrow \| \tau_{j} f-f_{\phi}<\delta . \\
& \text { (2) limen } \varepsilon, \exists y_{0} \log g+\forall x \geqslant n_{0}, \int_{|y|>\varepsilon} \varphi(y) d y<\delta
\end{aligned}
$$

$$
\begin{aligned}
(1)+(2) & \Rightarrow\left\|\varphi_{n} f f-\right\|_{p} \leqslant \delta \int_{|g|<\varepsilon} \varphi_{m}(y) d y+\delta\left(2\| \|_{p}\right) \\
& \leqslant \delta\left(1+2\| \|_{p}\right)
\end{aligned}
$$

10.3. Fourier Series. Let $X=[0,1]$ with the Lebesgue measure. For $n \in \mathbb{Z}$ define $e_{n}(x)=e^{2 \pi i n x}$, and given $f, g \in L^{2}(X, \mathbb{C})$ define $\underline{\underline{\langle f, g}\rangle}=\int_{X} f \bar{g} d \lambda$. This defines an inner product on $L^{2}(X)$, and $\|f\|_{L^{2}}^{2}=\langle f, f\rangle$.
Definition 10.17. If $\underline{\underline{f \in L^{2}}}, \underline{\underline{n}} \in \underline{\mathbb{Z}}$, define the $n^{\text {th }}$ Fourier coefficient of f by $\underline{f(n)}=\left\langle\underline{f}, e_{n} \uparrow \cdot\left(\bar{q}=g\right.\right.$ (complex con $\left.\eta^{2}\right)$.
Definition 10.18. For $N \in \mathbb{N}$, let $S_{N} f=\sum_{-N}^{N} \hat{f}(n) e_{n}$, be the N-th partial sum of the Fourier Series of f.
Question 10.19. Does $S_{N} \dot{f} \rightarrow f$? $\overline{\text { In }}$ what sense?

Lemma 10.20. $\left\langle e_{n}, e_{m}\right\rangle=\delta_{n, m}$.
Corollary 10.21. Let $p \in \operatorname{span}\left\{e_{-N}, \ldots, e_{N}\right\}$. Then $\left\langle f-S_{N} f, p\right\rangle=0$. Consequently, $\left\|f-\underline{S}_{\underline{N}} f\right\|_{2} \leqslant\|f-\underline{\underline{p}}\|_{2}$.
$\begin{aligned} \rightarrow P f_{i} \quad\left\langle e_{n}, e_{m}\right\rangle= & \int_{0}^{1} e^{2 \pi i n x} e^{-2 \pi i m x} d x=\int_{0}^{1} e^{2 \pi i(\eta-m) x} d x=\delta_{m, n} . \\ & \hat{} \quad \hat{(m)} \quad|m| \leq N .\end{aligned}$

$$
\Rightarrow\left\langle S_{N f} f-{ }^{\prime}, e_{m}\right\rangle=0 \quad \forall \quad|m| \leqslant N
$$

bialy $\Rightarrow\left\langle S_{N t} \mid-f, \phi\right\rangle=0 \quad \forall \phi \in \operatorname{Stan}^{\{ }\left\{e_{-N}, \cdots e_{N}\right\}$.

Alo nTs. $\left\|f-S_{N} f_{2} \leqslant\right\| f-\phi \|_{2} \quad \forall t$ Eddu $\left\{e_{-N} \cdots e_{N}\right\}$.
Pf: Whe

$$
\begin{aligned}
& f-s_{N} f=(f-p)+\underbrace{\left(p-s_{N} f\right)}_{\in \operatorname{stan}}\left\{e_{-N}, \cdots e_{N}\right\} . \\
& \Rightarrow\left\langle f-s_{N} f, p-s_{N} f\right\rangle=0 \\
& \Rightarrow \mid f-s_{N} f t_{2} \leqslant N f-p \|_{2} \quad Q E D .
\end{aligned}
$$

Proposition 10.22. $\underline{\underline{S_{N} f}}=\underline{D_{N}} * \underline{f}$, where $D_{N}=\frac{\sin \left(2 \pi\left(N+\frac{1}{2}\right) x\right)}{\sin (\pi x)}$. The functions D_{N} are called the Dirichlet Kernels.

$$
\begin{aligned}
& \text { Pf: } S_{N} f(x)=\sum_{-N}^{N} f_{1}(x) e_{n}(x)=\sum_{-N}^{N} \int_{0}^{1} f(y) e^{-2 \pi i x y} d y \cdot e^{+2 \pi i x x} \\
& =\int_{0}^{1} \underbrace{\sum_{-N}^{N} \underbrace{N} e^{2 \pi^{2} i n(x-y)}) f(y) d y . ~}_{-N} \\
& \Rightarrow S_{\omega} f(x)=D_{\omega} * f(x) \\
& \text { (rank git the fromlc). }
\end{aligned}
$$

Proposition 10.23. Define the Cesàro sum by $\underline{\underline{\sigma_{N}} f}=\frac{1}{N} \sum_{0}^{N-1} \underline{\underline{S_{n} f}}$. Then $\sigma_{N} f=\underline{F_{N} * f}$, where $F_{N}=\frac{1}{N}\left(\frac{\sin (N \pi x)}{\sin (\pi x)}\right)^{2}$.
Remark 10.24. The functions F_{N} are called the Fejér Kernels.
Proposition 10.25. The Fejér kernels are an approximate identity, but the Dirichlet kernels are not.

$$
\overbrace{\text { HG }}=
$$

can chuck explinty

Corollary 10.26. If $p \in[1, \infty)$ and $f \in L^{p}$, then $\sigma_{N} f \rightarrow f$ in L^{p}.
Corollary 10.27. If $f \in L^{2}$ then $S_{N} f \rightarrow f$ in L^{2}.
Remark 10.28. If $f \in L^{p}$ for $p \neq 2$ we need not have $S_{N} f \rightarrow f$ in L^{p}.

$$
\begin{array}{r}
\longrightarrow P_{f}: \text { Nile }\left\|s_{N} f-f\right\|_{2} \leq\left\|r_{N} f-f\right\|_{2} \quad(m \| g f t=2) \\
\left(\because \sigma_{N} f \in \operatorname{stm}\left\{\left\{e_{-N}, \cdots e_{N}\right\}\right)\right. \\
\| r_{N} f-f f_{t} \rightarrow 0 \forall p \in[(\infty) \Rightarrow Q E D .
\end{array}
$$

