10. Product measures

Whectrigles.
Product r-alg.
Let (X, Σ, μ) and (Y, τ, ν) be two measure spaces. Define $\Sigma \times \tau=\{\underline{A} \times \underline{B} \mid \underline{A} \in \Sigma, \underline{B} \in \tau\}$, and $\Sigma \otimes \tau=\sigma(\Sigma \times \tau)$.
Theorem 10.1. Let $\mu, \underline{\nu}$ be two σ-finite measures. There exists a unique measure π on $\Sigma \otimes \tau$ such that $\pi(A \times B)=\mu(A) \nu(B)$ for every $A \in \Sigma, B \in \tau$.
 $\underline{y} \mapsto f\left(x_{0}, y\right)$ are measurable. Moreover,
(10.1)

$$
\int_{X \times Y} f(x, y) d \pi(x, y)=\int_{x \in X}\left(\int_{y \in Y} f(x, y) d \nu(y)\right) d \mu(x)=\int_{y \in Y}\left(\int_{x \in X} f(x, y) d \mu(x)\right) d \nu(y)
$$

Theorem 10.3 (Fubini). If $f \in L^{1}(X \times Y, \pi)$ then for almost every $x_{0} \in X, y_{0} \in Y$, the functions $x \mapsto f\left(\underline{x}, y_{0}\right)$ and $y \mapsto f\left(x_{0}, y\right)$ are integrable in x and y respectively. Moreover,(10.1) holds.

Lemma 10.4. For every $E \subseteq X \times Y, x \in X, \underline{y} \in \underline{Y}$ define the horizontal and vertical slices of E by $H_{y}(E)=\{x \in X \mid(x, y) \in E\}$ and $V_{x}\{\underline{\{ }\{y \in Y \mid(x, y) \in E\}$.
(1) For every $x \in X, y \in Y$ we have $H_{y}(E) \in \Sigma$ and $V_{x}(E) \in \tau$.
(2) The functions $\underset{\sim}{x} \mapsto \underset{\leftarrow}{\nu}\left(V_{x}(E)\right)$ and $y \mapsto \mu\left(H_{y}(E)\right)$ are measurable.

Case I: $\mu s v$ ane fande
Pf: $1=\left\{E \in \sum \otimes \tau \mid\right.$ the $f^{n} y \mapsto p\left(H_{y}(E)\right)$ is τ menas $\}$.
Dyakkim Syptums: (1) $\Lambda \supseteq \sum x \tau$ (retegles) which is a \bar{T}-gye.
(2) $E, F \in \Lambda, E \subset F$, the $F-E \in \Lambda$

$$
\begin{aligned}
& \Rightarrow g \mapsto \mu\left(H_{y}(F-E)\right) \text { is } \tau \text { mans }
\end{aligned}
$$

$$
\Rightarrow F-E \in \Lambda .)
$$

(3)

$$
\begin{gathered}
E_{n} \in \Lambda, E_{n} \subseteq E_{n+1} \\
\mu\left(H_{1}\left(V_{n}\right)\right)= \\
\Rightarrow \\
\Rightarrow \bigcup_{1} E_{n} \in \Lambda .
\end{gathered}
$$

$$
\therefore \Lambda \text { is a } \lambda-\sin \& \hbar \Lambda \geqslant \sum \times \tau \Rightarrow \Lambda \geqslant \sigma\left(\sum \times \tau\right)=\sum_{\theta \tau \in D} \text {. }
$$

Car II: rn,v σ-fone: $\quad X=U F_{n}, Y=U E_{n}$.

$$
\begin{aligned}
& \mu\left(f_{n}\right)<\infty, \mu n\left(E_{n}\right)<\infty, F_{n} \subseteq F_{n+1}, E_{n} \subseteq E_{n+1} \\
& \mu\left(H_{y}(A)\right)=\lim _{n \rightarrow \infty} \underbrace{\mu \underbrace{\left(H_{g}\left(A \cap\left(E_{n} \times F_{n}\right)\right)\right.}_{y})}_{b_{y} \text { ine } 1 \text { an al } \tau \text {-mane fons. }} \\
& \Rightarrow y \rightarrow \mu\left(H_{y}(A)\right) \text { is alst } \tau \text {-mans. }
\end{aligned}
$$

Qand.

Proof of Theorem 10.1. NTS \exists ! meas $\tau \rightarrow \pi(A \times B)=\mu(A) \nu(B)$.
(1) Unipneares \longrightarrow Dove befare *
$\pi_{1} \& \pi_{2}$ ane 2 povait mersmoc
 $=\sum \theta \tau$.
(2) IOU Existhe.

$$
\text { Let } \pi(E)=\int_{y \in Y} \mu v\left(H H_{y}(E)\right) d v(y)
$$

(imetequal ic definuel $\because y \rightarrow \mu\left(H_{y}(E)\right)$ is $\tau-$ mers $\& \geqslant 0$)
(a) Is i a measme?

Song $E_{n} \subseteq\left\{\theta \tau, \quad E_{n} \cap E_{m}=\phi \quad\right.$ if $n \neq m$.

$$
\begin{aligned}
& \pi\left(\bigcup_{1}^{\infty} E_{n}\right)=\int_{y \in Y} \mu\left(H_{y}\left(\bigcup_{1}^{\infty} E_{n}\right)\right) d v(y) \\
& =\int_{y_{E} Y} \sum_{i}^{\infty} \mu\left(H_{y}\left(E_{n}\right)\right) d v(y) \stackrel{M C}{=} \sum_{1}^{\infty} \int_{j \in Y} \mu\left(H_{y}\left(E_{n}\right)\right) d v(y)
\end{aligned}
$$

$$
=\sum_{1}^{\infty} \pi\left(E_{n}\right) \quad \Rightarrow \pi \text { is a mear. }
$$

(2)

$$
\begin{aligned}
\pi(A \times B) & =\int_{y \in Y} \mu\left(H_{y}(A \times B)\right) d v(\eta) \\
& =\int_{j \in Y} \eta_{B}(y) \mu(A)=v(B) \mu(A) \quad \theta \in D .
\end{aligned}
$$

