10. Product measures

The Reatingles. Fordvet V - alg. Let (X, Σ, μ) and (Y, τ, ν) be two measure spaces. Define $\Sigma \times \tau = \{A \times B \mid A \in \Sigma, B \in \tau\}$, and $\Sigma \otimes \tau = \sigma(\Sigma \times \tau)$. **Theorem 10.1.** Let μ, ν be two σ -finite measures. There exists a unique measure π on $\Sigma \otimes \tau$ such that $\pi(A \times B) = \mu(A)\nu(B)$ for every $A \in \Sigma$, $B \in \tau$.

Theorem 10.2 (Tonelli). Let $\underline{f}: X \times Y \to [0, \infty]$ be $\Sigma \otimes \tau$ -measurable. For every $\underline{x_0 \in X}, y_0 \in Y$ the functions $x \mapsto f(x, y_0)$ and $y \mapsto f(\underline{x}_0, y)$ are measurable. Moreover, I Heratical Integrates I $\int_{X \times Y} \underline{f}(x,y) \, d\pi(x,y) = \int_{x \in X} \left(\int_{y \in Y} f(x,y) \, d\nu(y) \right) \, d\mu(x) = \int_{y \in Y} \left(\int_{x \in X} f(x,y) \, d\mu(x) \right) \, d\nu(y) \, d\mu(x) = \int_{y \in Y} \left(\int_{x \in X} f(x,y) \, d\mu(x) \right) \, d\mu(x) \, d\mu($ (10.1)**Theorem 10.3** (Fubini). If $f \in L^1(X \times Y, \pi)$ then for almost every $x_0 \in X$, $y_0 \in Y$, the functions $x \mapsto f(x, y_0)$ and $y \mapsto f(x_0, y)$

are integrable in x and y respectively. Moreover, (10.1) holds.

Lemma 10.4. For every
$$E \subseteq X \times Y$$
, $x \in X$, $y \in Y$ define the horizontal and vertical slices of E by $H_y(E) = \{x \in X \mid (x, y) \in E\}$
(1) For every $x \in X$, $y \in Y$ we have $H_y(E) \in \Sigma$ and $V_x(E) \in \tau$.
(2) The functions $x \mapsto v(V_x(E))$ and $y \mapsto u(H_y(E))$ are measurable.
 $\overline{Z} - wwh g$
 $\overline{T} - hwebs.$
Pf; O $A = \{E \in Z \otimes T \mid H_g(E) \in Z \quad \forall g \in Y\}$.
 $ChinM$: A is a $\nabla - dg$.
 $(P_1: H_g(O \in I)) = (V H_g(E_1)) \Rightarrow QED O = fhma.$
 $MIS(2)$: $\overline{L}e$. NTS.
 $H_x = fn = g \mapsto p(H_y(E))$ is $\tau - Mdas$.

Case I: $\mu \otimes \nu$ are finite $P_{f_{i}}^{\circ} \Lambda = \{ E \in \mathbb{Z} \otimes \tau \mid H_{h} \notin f_{h} \notin F \rightarrow \mu(H_{y}(E)) \}$ is τ weaks $\{$. Pyrikin Systems: $\bigcirc \land \supseteq \supseteq x \in (rectegles)$ which is a π -syc. @ E,FEA, EGF, Hun F-EEA $(P_{f}, \psi(H_{y}(F-E)) = \mu(f_{y}(F)) - \mu(H_{y}(E)) (\psi_{y}, \psi_{ane})$ more anty (4: E, FEN) >y >> m(Hy(F-E)) is t meas

 \Rightarrow $f-E \in \Lambda$,) $E_{n} \in A$, $E_{m} \subseteq E_{m+1}$ (3) $\mu(H_{y}(\tilde{U}E_{n})) = \lim_{n \to \infty} \mu(H_{y}(E_{n}))$ T-wear for of M. is a to meas for all y $\rightarrow V E_{n} G \Lambda.$ e, Aie a A-sys & AAZ ZXT = AZV(ZXT) = ZQT

Are I:
$$p, v = \sqrt{f_n f_n}$$
: $X = UF_n$, $Y = UE_n$.
 $p(f_v) < v$, $per(E_n) < w$, $F_n \subseteq F_{n+1}$, $E_n \subseteq F_{n+1}$
 $p(H_y(A)) = \lim_{m \to 0} p(H_y(A \cap (E_n \times F_n)))$
 $h \to v$
by one 1 are all τ -aneres fors.
 $\Rightarrow g \to p(H_y(A))$ is also τ -meres.
GET.

Proof of Theorem 10.1. NTS
$$\exists \downarrow_{\alpha}$$
 nulles $T \rightarrow T_{\alpha}(A \times B) = \mu(A) \nu(B)$.
 $\bigcirc \bigcup_{\alpha \in A} \nabla B = \bigcup_{\alpha \in A} \nabla B = \bigcup_{\alpha \in A} \nabla B = \prod_{\alpha \in A} \nabla B$

 $= \sum_{i}^{w} \tau(E_{in}) \implies \tau \text{ is a mean.}$ $(z) \tau(A \times B) = \int p(H_y(A \times B)) d\nu(y)$ $y \in Y$ $= \int \frac{1}{B}(y) \mu(A) = \nu(B) \mu(A) \text{ OED}$