Theorem 9.25. Let (X, Σ, μ) be a σ -finite measure space, $p \in [1, \infty)$, 1/p + 1/q = 1. The map $g \mapsto T_g$ is a bijective linear isometry between L^q and $(L^p)^*$.

Remark 9.26. For $p \in (1, \infty)$ the above is still true even if X is not σ -finite.

Remark 9.27. For $p = \infty_{\ell}$ the map $g \mapsto T_g$ gives an *injective* linear isometry of $L^1 \to (L^{\infty})^*$). It is not surjective in most cases.

$$\frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{1$$

NTS
$$g \rightarrow \overline{g}$$
 is sumplie. i.e. If $\Lambda \in (\underline{L}^{+})^{*}$, $\forall TS \exists g \in \underline{L}^{+}\overline{g} = \Lambda$
Care I: Say μ is findle.
Define $\nu(A) = \Lambda(\underline{1}_{A})$.
Claim: ν is a monome!
Pf: Say $A_{1}, A_{2} - \cdots$ stably monomy disj sets
Claim: $\underline{1}_{V} A_{n}$ $\xrightarrow{L} \qquad 1 \qquad \mathcal{D} A_{n}$.
Pf: $\| \exists_{V} A_{n} - \exists_{V} A_{n} \|_{p}^{p} = \int_{X} (\underbrace{N+1}_{N+1} \exists_{A_{n}})^{p} = \sum_{N+1} \mathcal{N} A_{N} \underbrace{N-1}_{N-1} \mathcal{D}$

$$= \lambda_{inn} \sum_{n \to \infty} \nu(A_n) = \Lambda(A_n) \sum_{n \to \infty} \nu(A_n) \sum_{n \to \infty} \nu(A_n)$$

$$\begin{array}{cccc} (\underline{\text{laim}}: & \mathcal{V} \ll \mu & (P_{1}^{i}: \mu(A) = 0 \Rightarrow \mathcal{V}(A) = \Lambda(\underline{1}_{A}) = \Lambda(0) = 0) \\ & (\stackrel{o:}{} \underline{1}_{A} = 0 \text{ a.e.}) \\ \Rightarrow & B_{3} R.N. & \exists g & \stackrel{ind}{\underline{1}_{A}} \\ \Rightarrow & \mathcal{V}(A) - \int_{A} g & d\mu \\ & A \\ (\underline{\text{laim}}: \mathbb{O}_{g} \in \underline{L}^{Y}, & (\underline{\text{laim}}:\mathbb{O}_{i}: \Lambda(s) = \int_{X} sg d\mu & \forall s & oinfle. \\ & (\underline{\text{laim}}:\mathbb{O}_{g}: \Lambda(\underline{1}_{A}) = \int_{Y} \mathcal{V}(A) = \int_{A} sd\mu & \& & \text{lineally} \Rightarrow (\underline{\text{laim}}:\mathbb{O}_{g} ord. \end{array}$$

R of Claim D: From 1911, a = sup Stadp = sup Stadp Sta < b > gelt. $\leq || \wedge ||$ $D_{\circ}(. \Rightarrow C|aim 3 \Rightarrow QED.$

Case II: $X = UF_n$, $F_n \subseteq F_n \subseteq \psi(F_n) < \omega$. Note the finite from one I is unique $M(I = f_n) = f_n f_{n+1}$ $\Rightarrow \forall u \exists g_n \in \mathcal{L} + \Lambda(\mathcal{I}_{F_n} f) = \int \mathcal{G}_n f \mathcal{I}_{F_n} dp.$ By ingrands, $g_{n+1} \stackrel{f}{=} g_n \stackrel{f}{=} f_n$, let $g = \lim_{n \to \infty} g_n$ (meterist) Claim: $g \in L^{\gamma}$. (\mathcal{P}_{t} : $\int IgI^{\gamma} = \lim_{X \to \infty} \int IgI^{\gamma} = \lim_{F_{m}} \int Ig_{m}I^{\gamma}$ X MC $\int_{F_{m}} IgI^{\gamma} = \lim_{F_{m}} \int Ig_{m}I^{\gamma}$

Now $\forall f \in L^{\dagger}$, $\int f g = \lim_{x \to \infty} \int f g = \lim_{x \to \infty} \int f g = \lim_{x \to \infty} \Lambda(1 + f) = \Lambda(f)$ $\left(\begin{array}{c} \cdot \cdot \cdot \\ \cdot \cdot \cdot \\ \cdot \\$ QFD.

9.4. Riesz Representation Theorem.

Theorem 9.28 (Riesz Representation Theorem). Let X be a compact metric space, and \mathcal{M} be the set of all finite signed measures on X. Define $\Lambda: \mathcal{M} \to C(X)^*$ by $\Lambda_{\mu}(f) = \int_X f d\mu$ for all $\mu \in \mathcal{M}$ and $f \in C(X)$. Then Λ is a bijective linear isometry. Remark 9.29. In particular, for every $I \in C(X)^*$, there exists a unique finite regular Borel measure μ such that $I(f) = \int_X f d\mu$ for every $f \in C(X)$.

$$\mu \quad a \quad \text{finde} \quad \text{signed} \quad \text{measure} \quad \text{an} \quad X$$

$$f \in C(X) \quad T_{\mu}(f) = \int_{X} d\mu \quad \mu(X)$$

$$|T_{\mu}(f)| \leq ||f||_{\infty} \quad ||\mu|(X)$$

$$\cdot \quad ||f||_{\infty} \quad ||f||_{\infty} \quad ||f||_{\infty}$$

(L) = ZA | A:L -> R is bold & linear ?

 geL^{n} , $f^{\perp}f^{\perp}=1$, $f \neq e(L^{\perp})$ det by

10. Product measures

Let $(\underline{X}, \underline{\Sigma}, \mu)$ and $(\underline{Y}, \tau, \nu)$ be two measure spaces. Define $\underline{\Sigma} \times \underline{\tau} = \{\underline{A} \times \underline{B} \mid A \in \Sigma, \underline{B} \in \tau\}$, and $\underline{\Sigma} \otimes \tau = \sigma(\underline{\Sigma} \times \underline{\tau})$.

Theorem 10.1. Let μ, ν be two σ -finite measures. There exists a unique measure $\underline{\pi}$ on $\Sigma \otimes \tau$ such that $\pi(A \times B) = \mu(A)\nu(B)$ for every $A \in \Sigma, B \in \tau$

Theorem 10.2 (Tonelli). Let $f: X \times Y \to [0, \infty]$ be $\Sigma \otimes \tau$ -measurable. For every $x_0 \in X$, $y_0 \in Y$ the functions $x \mapsto f(x, y_0)$ and $y \mapsto f(x_0, y)$ are measurable. Moreover,

(10.1)
$$\int_{X \times Y} f(x,y) \, d\pi(x,y) = \int_{x \in X} \left(\int_{y \in Y} f(x,y) \, d\nu(y) \right) d\mu(x) = \int_{y \in Y} \left(\int_{x \in X} f(x,y) \, d\mu(x) \right) d\nu(y) \, d\mu(x) = \int_{y \in Y} \left(\int_{x \in X} f(x,y) \, d\mu(x) \right) d\mu(x) \, d\mu(x)$$

Theorem 10.3 (Fubini). If $f \in L^1(X \times Y, \pi)$ then for almost every $x_0 \in X$, $y_0 \in Y$, the functions $x \mapsto f(x, y_0)$ and $y \mapsto f(x_0, y)$ are integrable in x and y respectively. Moreover, (10.1) holds.