Theorem 9.16. Let
$$\underline{\mu}, \underline{\nu}$$
 be positive measures such that $\underline{\nu}$ is σ -finite. There exists a unique pair of measures $(\underline{\nu}_{ac}, \underline{\nu}_{s})$ such that $\underline{\nu}_{ac} \ll \mu, \underline{\nu}_{s} \perp \mu$, and $\underline{\nu} = \underline{\nu}_{ac} + \underline{\nu}_{s}$.
hast time \longrightarrow did the finant day \mathcal{D} is finite.
Unique 2008: Sag $\mathcal{D} = \mathcal{D}_{sc} + \mathcal{D}_{s} = \mathcal{D}_{ac} + \mathcal{D}_{s}$
 $\exists \mathcal{N} \neq \mu(\mathcal{N}) = \mathcal{D} \neq \mathcal{D}_{s}(\mathcal{N}^{C}) = \mathcal{D} \quad \mathcal{D}$

$$= \mathcal{V}_{\mathcal{S}}(A) = \tilde{\mathcal{V}}_{\mathcal{S}}(A) \qquad \mathcal{V}_{\alpha c}(A) = \tilde{\mathcal{V}}_{\alpha c$$

Clearly $v_{s} \perp h_{e}$. (" $\mu(N) = 0$) NTS $v_{ae} \ll \mu$ is w(A) = 0. Then $v_{ae}(A) = \lim_{A \to A} v_{Ae}^{(m)}(A) = 0$ $\int_{A} \int_{A} \int$

Corollary 9.17. Let μ be a positive measure, and ν be a finite signed measure. There exists a unique pair of signed measures (ν_{ac}, ν_s) such that $\nu_{ac} \ll \mu$, $\nu_s \perp \mu$ and $\nu = \underbrace{\nu_{ac} + \underbrace{\nu_s}}_{s}$.

$$P_{z}: v = v^{\dagger} - v^{-} k \quad \text{wher } v^{\dagger} = v^{\dagger}_{ac} + v^{\dagger}_{s}$$

QED.

(Radon N:control) **Corollary 9.18.** Let μ, ν be σ -finite positive measures. There exists a unique positive measure ν_s and nonnegative measurable function \underline{g} such that $\mu \perp \nu_s$ and $d\nu = \underline{d\nu_s} + \underline{g} \, d\mu$.

9.3. Dual of L^p .

Proposition 9.19. Let U, V be Banach spaces, and $T: U \to V$ be linear. Then \underline{T} is continuous if and only if there exists $\underline{c} < \infty$ such that $\|T\underline{u}\|_{V} \leq \underline{c} \|\underline{u}\|_{U}$ for all $u \in U, v \in V$.

$$\begin{aligned} & P_{I}^{\circ} S_{ay} T \text{ is } cts. \Rightarrow T \text{ is } cts \text{ ato } \Rightarrow \forall z g \exists s > 0 + \|u - 0\|_{U} < s \Rightarrow \\ & \Rightarrow \forall u \in U, \\ & \Rightarrow \forall u \in U, \\ & \left\| \frac{s_{u}}{2\|u\|} \right\| = \frac{s}{2} \Rightarrow |T(\frac{s_{u}}{2\|u\|})| < \varepsilon \\ & \Rightarrow \left(\frac{s_{u}}{2\|u\|} \right\| = \frac{s}{2} \Rightarrow |T(\frac{s_{u}}{2\|u\|})| < \varepsilon \\ & \Rightarrow \left(\frac{s_{u}}{2\|u\|} \right\| = \frac{s}{2} \Rightarrow |T(\frac{s_{u}}{2\|u\|})| < \varepsilon \end{aligned}$$

Conversely: Assume
$$\|Tu\|_{V} \in C\|u\|_{V}$$
. NTS T is de.
Note $\|Tu_{v} - Tu_{v}\|_{V}$ finar $\|T(u_{v} - u_{v})\| \leq C\|u_{v} - u_{v}\|_{V}$.
 $\Rightarrow T$ is Lifeting \Rightarrow drs QED

Definition 9.20. We say $T: U \to V$ is a bounded linear transformation if T is linear and there exists $c < \infty$ such that $||Tu||_V \leq c||u||_U$ for all $u \in U$, $v \in V$. **Definition 9.21.** The dual of U is defined by $U^* = \{\underline{u}^* \mid u^* : \underline{U} \to \mathbb{R} \text{ is bounded and linear.}\}$ Define a norm on U^* by $||\underline{u}^*||_{U^*} \stackrel{\text{def}}{=} \sup_{u \in U - 0} \frac{1}{||u||_U} \underbrace{u^*(u)}_{u^*(u)} = \sup_{\|u\|_U = 1} \underbrace{u^*(u)}_{u^*(u)} = \sup_{\|u\|_U = 1} \underbrace{u^*(u)}_{u^*(u)} \underbrace{||\underline{u}^*(u)|}_{u^*(u)}.$ **Proposition 9.22.** The dual of a Banach space is a Banach space.

 $\mathcal{A}(\mathcal{U},\mathcal{V}) = \{ \exists \mid T:\mathcal{U} \longrightarrow \mathcal{V} \notin T \text{ bid lines } \}$

 $\|T\| = \sup_{\lambda \neq 0} \|T\|_{\lambda}$ $2(u, v) \quad u \neq 0 \quad \|u\|_{\mu}$

> (You dreike)

felip] Proposition 9.23. Let 1/p + 1/q = 1, y = 1, **Proposition 9.23.** Let 1/p + 1/q = 1, $g \in L^q(X)$. Define $T_g: L^p \to \mathbb{R}$ by $T_g f = \int_X fg \, d\mu$. Then $T_g \in (L^p)^*$. }: (leanly Ty (t, + 12) = Ty ty + Ty Ty to. l \Rightarrow $T_{q} \in (\mathcal{L}^{\dagger}(x))^{\bullet}$. $\| \left\| \right\|_{\mathcal{G}} \| \leq \| \left\| \right\|_{\mathcal{G}}$ (Claim? Duality from lefone > $\left[\left[1\right]_{q}\right]_{q} \neq \mathbf{x} = \left[q\right]_{q}$

Theorem 9.25. Let $(\underline{X}, \underline{\Sigma}, \mu)$ be a $\underline{\sigma}$ -finite measure space, $p \in [1, \infty)$, 1/p + 1/q = 1. The map $\underline{g} \mapsto \underline{T}_{g}$ is a bijective linear isometry between \underline{L}^{q} and $(\underline{L}^{p})^{*}$.

Remark 9.26. For $p \in (1, \infty)$ the above is still true even if X is not σ -finite.

Remark 9.27. For $p = \infty$, the map $g \mapsto T_g$ gives an *injective* linear isometry of $L^1 \to (L^\infty)^*$). It is not surjective in most cases.

Negimes work (Net time)

 $(\mathcal{D}, \mathcal{E}, \mathcal{P})$ $P(\mathcal{D}) = 1.$ $R.V. \rightarrow (\mathcal{Y}) \in \mathcal{D} \rightarrow R$ \mathcal{E} -meas is a R.V.Par. RV, Y ~ Obsen Y. > What exits can you down I the for of ? $r(Y) = r dy gen by {Y'(W) | U \leq R day$

 $E(X | \underline{Y}) - E(X | \underline{\tau}(\underline{Y}))$ 700 2 $\sigma(\gamma(u)) | u \subseteq R is dun')$ P(A|B) = P(A|B)P(B) $P(A | F) = E(1_A | F)$