Theorem 9.16. Let μ, ν be positive measures such that ν is σ-finite. There exists a unique pair of measures $\left(\nu_{a c}, \nu_{s}\right)$ such that $\nu_{a c} \ll \mu, \nu_{s} \perp \mu$, and $\nu=\nu_{a c}+\nu_{s}$.
hast of existence
hart time \rightarrow aid the proof when v is finite.
Vinque res: Say $v=v_{R C}+v_{S}=\tilde{v}_{R C}+\widetilde{v}_{S}$

$$
\begin{align*}
& \left.\begin{array}{l}
\exists \omega \quad \gamma \mu(N)=0 \quad \& \quad v_{S}\left(N^{C}\right)=0 \\
\exists \tilde{N} \quad \mu(\tilde{N})=0 \quad \& \quad \tilde{v}_{S}\left(N^{C}\right)=0
\end{array}\right\} \begin{array}{l}
\hat{N}=N U \tilde{N} \\
(\mu(\hat{N})=0
\end{array} \\
& \text { Pick any } A \in \sum \text {. }\left(v_{s}-v_{s}\right)(A)=\left(v_{s}-\tilde{v}_{S}\right)(A \cap \hat{N})=0 \\
& a \operatorname{leo\theta }\left(v_{s}-\tilde{\vartheta}_{s}\right)(A)=\left(v_{a c}-\tilde{v}_{a C}\right)(A)=\left(v_{a c}-\tilde{v}_{a c}\right)(A \cap \tilde{N}) \\
& \mu(A \cap \hat{N})=0
\end{align*}
$$

$$
\Rightarrow V_{s}(A)=\tilde{v}_{s}(A) \quad \& v_{a c}(A)=\tilde{v}_{a c}(A) \Rightarrow \text { ind } Q E D .
$$

Cos II: v is σ-forte.
Ware $X=\bigcup_{1}^{\infty} F_{n}, F_{n} \subseteq F_{a+1} \& v\left(F_{n}\right)<\infty$
Un, hat $v^{(n)}(A)=v\left(A \cap F_{n}\right)$. Cns $I \Rightarrow$ 因 Can conte $v_{\text {na }}^{(n)}=v_{\text {ace }}^{(n)}+v_{s}^{(n)}$ also $\exists N_{n} \subseteq F_{n}+\mu\left(N_{n}\right)=0$, \& $v_{s}^{(n)}(A)=\nu_{\nu n}^{(u)}\left(A \cap N_{n}\right)$ $=\nu\left(A \cap N_{n} \cap F_{n}\right)$.
Nor at $N=\bigcup_{1}^{\infty} N_{n}, \quad v_{\text {ae }}(A)=v\left(A \cap N^{c}\right)$ \& $v_{s}(A)=v(A \cap N)$.

$$
\begin{aligned}
& \text { Clearly } v_{s} \perp{ }^{\mu} \text { at. }(\because \mu(N)=0) \\
& \text { NTS } v_{\text {ae }} \ll \mu: \quad S_{\text {ar }} \mu(A)=0 \text {. Then } v_{a C}(A)=\lim _{\uparrow} v_{\text {he }}^{(u)}(A)=0 \\
& =0 E D
\end{aligned}
$$

Corollary 9.17. Let μ be a positive measure, and ν be a finite signed measure. There exists a unique pair of signed measures $\left(\nu_{a c}, \nu_{s}\right)$ such that $\nu_{a c} \ll \mu, \nu_{s} \perp \mu$ and $\nu=\underline{\underline{\nu_{a c}}}+\underline{\underline{\nu_{s}}}$.

$$
\text { Pf: } v=v^{+}-v^{-} \& \text { wite } v^{ \pm}=v_{a c}^{ \pm}+v_{s}^{ \pm}
$$

(Radon Nicoothm)
Corollary 9.18. Let μ, ν be σ-finite positive measures. There exists a unique positive measure ν_{s} and nonnegative measurable function g such that $\mu \perp \underline{\underline{\nu_{s}}}$ and $d \nu=d \underline{\underline{\nu_{s}}}+\underline{\underline{g} d \mu}$.

$$
\text { Pf: Know } \nu=v_{a c}+v_{c} \text { \& by RN know } \exists g+d v_{a c}=g d \mu \text {. }
$$

9.3. Dual of L^{p}.

Proposition 9.19. Let U, V be Banach spaces, and $T: U \rightarrow V$ be linear. Then T is continuous if and only if there exists $c<\infty$ such that $\|T u\|_{V} \leqslant c\|u\| \overline{\bar{U}} \overline{\text { for }}$ all $\overline{u \in U,} v \in V$.
\uparrow bud
Pf: Say T is ats. $\Rightarrow T$ is as ado $\Rightarrow \forall 2>0, \exists \delta>0+\|u-0\|_{U}<\delta \Rightarrow$

$$
\begin{aligned}
& \Rightarrow\|u\|<\delta \Rightarrow\left\|T_{u}\right\|_{V}<\varepsilon . \\
& \Rightarrow \forall u \in U,\left\|\frac{\delta u}{2 \operatorname{lu} \|}\right\|=\frac{\delta}{2} \Rightarrow \left\lvert\, T\left(\frac{\delta u}{2 \mid u \|}\right)\right. \|<\varepsilon \\
& \Rightarrow(\text { linuting })\|T u\| \leq \frac{2 q \mid u \|}{\delta} \\
& \text { Chase } c=\frac{2 q}{\delta} \Rightarrow Q E D .
\end{aligned}
$$

Comenely: Assane $\|T u\|_{V} \in c\|u\|_{U}$. NTS T is des.
Note $\left|T u_{1}-T u_{2}\right|_{V} \stackrel{\text { linar }}{=} \mid T\left(n_{1}-u_{2}\right)\|\leqslant c\| u_{1}-u_{2} \|_{V}$.
$\Rightarrow T$ is Liposily \Rightarrow ds QED

Definition 9.20. We say $T: \underline{U} \rightarrow \underline{\underline{V}}$ is a bounded linear transformation if T is linear and there exists $c<\infty$ such that $\|T u\|_{V} \leqslant c\|u\|_{U}$ for all $u \in U, \bar{v} \in V . \quad \leftarrow u^{*}$ is called a bold linear functional
Definition 9.21. The dual of U is defined by $U^{*}=\left\{\underline{u}^{*} \mid u^{*}: \underline{\underline{U}} \rightarrow \underline{\mathbb{R}}\right.$ is bounded and linear. $\}$ Define a norm on U^{*} by

Proposition 9.22. The dual of a Banach space is a Banach space.

$$
\Rightarrow(\text { You } \text { leek })
$$

p $\in[1, \infty]$
Proposition 9.23. Let $1 / p+1 / q=1, g \in L^{q}(X)$. Define $T_{g}: L^{p} \rightarrow \mathbb{R}$ by $T_{g} f=\int_{X} f g d \mu$. Then $T_{g} \in\left(L^{p}\right)^{*}$.
Proposition 9.24. The map $g \mapsto \underline{T}_{g}$ is a bounded linear map from $\underline{L}^{q} \rightarrow{\left.\underline{\left(L^{p}\right.}\right)}^{*} \cdot<$
$\rightarrow P_{f: C}$ Clearly $T_{g}\left(f_{1}+f_{2}\right)=T_{g} f_{1}+T_{g} T_{g} f_{2} . \quad\left(a_{2}+g_{2}\right)=T_{9} f_{1}+T_{g} f_{2}$

$$
\begin{gathered}
\left(a_{1}+g_{3} f=\int\left(g_{1}+g_{2} b\right.\right. \\
=T_{9} t+\sigma_{2} t
\end{gathered}
$$

$$
\Rightarrow y^{-1} \in\left(L^{t}(x)\right)^{*} \text {, }
$$

$$
\left.\left.\left\|T_{g}\right\|_{\perp}\right)^{*}=|g|_{q}\right) .
$$

 between \underline{L}^{q} and $\left(L^{p}\right)^{*}$.
Remark 9.26. For $p \in(1, \infty)$ the above is still true even if X is not σ-finite.
Remark 9.27. For $p=\infty$, the map $g \mapsto T_{g}$ gives an injective linear isometry of $\left.L^{1} \rightarrow\left(L^{\infty}\right)^{*}\right)$. It is not surjective in most cases.

PA: $\left(\Omega,\left(E, P_{1}\right)\right.$
R.V. $\rightarrow X: \Omega \rightarrow R \quad G$-mens is a R.V.
$R V, Y<O \operatorname{cen} Y \rightarrow$ What evate can yon adrer the to of?

$$
\sigma(Y)=T \operatorname{dy} \operatorname{gan} \text { by }\left\{\underline{\left.\left.\underline{y^{-1}}(U) \mid U \subseteq \mathbb{R} \phi\right\}\right\}}\right.
$$

$$
\begin{aligned}
& E(x \mid y)=\underset{\sim a}{E(x \mid r y} \underset{\nu}{\Sigma(\underset{\nu}{v})} \\
& \sigma\left(y^{-1}(u) \mid u \subseteq R \text { is du }\right) \\
& \text { E(P(A|B) }=\frac{P(A D B)}{P(B)} \\
& P(A \mid f)=E\left(1_{A} \mid f\right)
\end{aligned}
$$

