9.2. Absolute Continuity.

Definition 9.13. Let μ, ν be two measures. We say ν is absolutely continuous with respect to μ (notation $\nu \ll \mu$) if whenever $\mu(A) = 0$ we have $\nu(A) = 0$.

Example 9.14. Let $g \ge 0$ and define $\nu(A) = \int_A g \, d\mu$. (Notation: Say $\underline{d}\nu = \underline{g} \, d\mu$.)

Theorem 9.15 (Radon-Nikodym). If μ, ν are two positive measures such that ν is σ -finite and $\nu \ll \mu$, then there exists a measurable function g such that $0 \leq g < \infty$ almost everywhere and $d\nu = g d\mu$.

hat time: (1) lase I's v(X) < w. (& $\mu(X) < \omega$) $(\exists \mathcal{E} = \mathcal{Z}_{\mathcal{E}} | \mathfrak{e}_{\mathcal{E}} \geq \mathcal{O} \times \mathcal{V}_{\mathcal{A}}, \quad \int_{\mathcal{A}} \mathcal{L}_{\mathcal{E}} d\mathfrak{p} \leq \mathcal{V}(\mathcal{A}))$ 3 Note if the EE => LV to EE (A) => => = a sey (fn) >] fn kp -> cub] f dp (Exono < v(X) < o)

by (3) can ensure
$$\xi_{n} \leq \xi_{n+1}$$

(5) but $g = \lim_{n \to \infty} \xi_{n}$. I Claim $dv = g dm$
(6) but $d\lambda = dv - g dm$ (i.e. $\lambda(A) - v(A) - \int g dm$.)
Note: $g \in g (m.c.) \Rightarrow \lambda$ is a true meas.
(7) NTS $\lambda = 0$. Will chars $\forall \epsilon > 0$, $\lambda \leq \epsilon m$. ($\Rightarrow \underline{\alpha} \in D$)

Note
$$\lambda - \varepsilon p$$
 is a signed measure. Let $X = PUN$ be
the Hamb decomposition of $\lambda - \varepsilon p$.

 $\frac{(laim'o}{p} g + \epsilon \frac{1}{p} \in \mathcal{F}.$ L> Pf: NTS VA, $\int_{A} (3 + 2 I_{p}) I_{p} \leq v(A)$ $\int (g + \varepsilon f_{p}) dp = v(A) - \lambda(A) + \varepsilon p(AAP)$ $= v(A) - \lambda(ANN) - (\lambda(APP) - \varepsilon p(AOP))$ $= v(A) - \lambda(ANN) - (\lambda(APP) - \varepsilon p(AOP))$ $= 0 \quad (\varepsilon P is + v \epsilon p \lambda - \varepsilon p)$ = v(A) $\Rightarrow \alpha \beta \phi \beta q + c 1 p e f \Rightarrow p (P) = 0$ a.c. r (P) = 0Jahn = sup Stan

 $\Rightarrow \lambda(P) = 0 \Rightarrow (\lambda - \epsilon_{P})(P) = 0$ \rightarrow $\lambda - \epsilon \mu$ is a - re wear $\ni \lambda \leq \epsilon \mu, \Rightarrow QED.$ Uniquenecs: If $dv = g d\mu = h d\mu \Rightarrow g = h a.c.$ $P_{i}: \forall A, \int g d\mu = \int h d\mu = \int \int (g - h) d\mu = O \forall A.$ Choose $A = \{g - h > 0\} \Rightarrow \int (g - h) d\mu = 0 \Rightarrow \mu\{g > h\} = 0$ $MS \quad \mu\{g < h\} = 0 \quad \Rightarrow g = h \approx e.$

Lie II: Worke
$$X = \bigcup F_{u_{n}}$$
, $p(F_{u}) < \omega$, $v(F_{u}) < \omega$.
 WL . accurve $F_{u_{n}} \subseteq F_{u_{n+1}}$.
By Case I, $\exists g_{u_{n}} \neq \forall A$, $v(AOF_{u}) = \int g_{u_{n}} d\mu$.
By inights were $g_{u_{n+1}} = g_{u_{n}}$.
Sol $g = \lim_{u_{n}} g_{u_{n}}$ (is an ine lim).
 $v(A) = \lim_{u_{n} \to \infty} v(AOF_{u_{n}}) = \lim_{u \to \infty} \int g d\mu = \lim_{u \to \infty} \int f_{u_{n}} g d\mu$.
 $P(A) = \lim_{u_{n} \to \infty} v(AOF_{u_{n}}) = \lim_{u \to \infty} \int g d\mu = \lim_{u \to \infty} \int f_{u_{n}} g d\mu$.
 $P(A) = \lim_{u \to \infty} v(AOF_{u_{n}}) = \lim_{u \to \infty} \int g d\mu = \lim_{u \to \infty} \int g d\mu$.

Theorem 9.16. Let μ, ν be positive measures such that ν is σ -finite. There exists a unique pair of measures $(\underbrace{\nu_{ac}, \nu_s})$ such that $\underbrace{\nu_{ac} \ll \mu, \nu_s \perp \mu, \text{ and } \nu = \underbrace{\nu_{ac} + \nu_s}$.

$$\begin{array}{l} \mathcal{H}^{\circ} \text{ face } \mathbf{I} : \underbrace{\mathsf{K}} v \quad finite \\ \text{ Let } \mathcal{H} = \underbrace{\mathsf{L}} A \left| \psi(A) = O_{1}^{\circ} \mathcal{R} \\ \text{ Consider } \sup_{\mathbf{k} \in \mathbf{I}} \underbrace{\mathsf{L}} v(A) \right| A \in \underbrace{\mathsf{N}}_{i}^{\circ}, \ k \text{ find } \underbrace{\mathsf{N}}_{k} \neq \underbrace{\mathsf{V}}(\operatorname{N}_{k}) \xrightarrow{\mathsf{L}} \sup_{A \in \operatorname{N}} v(A) \\ \text{ Let } \operatorname{N} = \underbrace{\overset{\circ}{\mathsf{O}}}_{K=1} \underbrace{\mathsf{N}}_{k}, \qquad \underbrace{\mathsf{V}}_{s}(A) = v(A(\operatorname{N})), \ \underbrace{\mathsf{V}}_{ac}(A) = v(A(\operatorname{N})^{c}), \\ \underbrace{\mathsf{Claim}}_{ac} \underbrace{\mathsf{O}}_{k} \xrightarrow{\mathsf{V}}_{ac} \underbrace{\mathsf{M}}_{i} \xrightarrow{\mathsf{N}}_{ac} \underbrace{\mathsf{M}}_{i} = v(A(\operatorname{N})). \end{array}$$

$$P_{k} \oint (D); v_{k}(N^{c}) = 0 \neq \mu(N) = 0 \Rightarrow 0.$$

$$P_{k} \oint (2); NTS \quad \mu(A) = 0 \Rightarrow v_{a}(A) = 0$$

$$i \cdot e, NTS \quad \mu(A) = 0 \Rightarrow \nu(A \cap N^{c}) = 0$$

$$\nu(N) \leq \nu(A \cup N) \leq \nu(N) \quad (\cdots \quad \nu(N) = \sup \nu(B))$$

$$\stackrel{\mu(D)=0}{\leq} \nu(A \cup N) = 0 \Rightarrow \nu(A \cap N^{c}) = 0$$

$$e^{\mu(A \cup N)} = 0$$