9. Signed Measures

9.1. Hanh and Jordan Decomposition Theorems.

Definition 9.1. We say $\mu: \Sigma \to [-\infty, \infty]$ is a signed measure if:

- (1) The range of μ doesn't contain both $+\infty$ and $-\infty$.
- (1) The range of μ doesn't contain both $+\infty$ and $-\infty$ (2) $\mu(\emptyset) = 0$
- (3) If $A_i \in \Sigma$ are countably many pairwise disjoint sets then $\mu(\cup_1^{\infty} A_i) = \sum_1^{\infty} \mu(A_i)$.

Example 9.2. Let $f \in L^1(X, \mu)$, and define ν by $\nu(A) = \int_A f d\mu$. Then ν is a signed measure, and we write $d\nu = f d\mu$.

Example 9.3. If μ , ν are two (positive) measures such that either one is finite, then $\mu - \nu$ is finite.

Theorem 9.4 (Jordan Decomposition). Any signed measure can be written (uniquely) as the difference of two mutually singular positive measures.

Definition 9.5. We say $A \in \Sigma$ is a *negative set* if $\mu(B) \leq 0$ for all measurable sets $B \subseteq A$.

Proposition 9.6. If $\mu(A) \in (-\infty, \infty)$ then there exists $B \subseteq A$ such that B is negative and $\mu(B) \leqslant \mu(A)$.

Theorem 9.7 (Hanh decomposition). If μ is a signed measure on X, then $X = P \cup N$ where P is positive and N is negative. Remark 9.8. The decomposition is unique up to null sets. $P : X = P \cup N - P$

 $= (P \cap P') \cup (P \cap N')$ Inthe tre 2 - we > all supers of PON are were O → P= P' () mml set.

Pf of Existence: DNL agome - 00 of varge (p).

(2) Let $x = Im \left\{ p(E) \mid E \subseteq X \right\}$. (x could be $-\infty$)

(5) NTS P=NC 15 +W. AFEP. NTS ME) > 0. If $\gamma(E) < 0 \Rightarrow \gamma(E) + \gamma(N) < \infty$ (o & sis june) Conhabion

> ME)>0 => P 1s + W => QED.

Definition 9.9. We say two positive measures $\underline{\mu}, \underline{\nu}$ are <u>mutually singular</u> if there exists $\underline{C} \subseteq X$ such that for every $A \in \Sigma$ we have $\mu(A \cap C) = \nu(A \cap C^c) = 0.$ Proof of Theorem 9.4 If I ica signed wears then 3 of pt 2 pt 1 pt + N = N - N(pt & pt and the meas) Pf: X = PUN by Hanh. Unignoses $\rightarrow \mu = \mu^{\dagger} - \mu^{\dagger} = \nu^{\dagger} - \nu^{\dagger}$, $\mu^{\dagger}, \nu^{\dagger} = 0$, $\mu^{\dagger} \perp \mu^{\dagger}$

> X = C U C = D U ED - ve the tree with with with with with **Definition 9.10.** Let $\underline{\mu}$ be a signed measure with Jordan decomposition $\underline{\mu} = \underline{\mu}^+ - \underline{\mu}^-$ Define the variation of $\underline{\mu}$ to be the (positive) measure $|\underline{\mu}| \stackrel{\text{def}}{=} \underline{\mu}^+ + \underline{\mu}^-$.

Definition 9.11. Define the <u>total variation</u> of μ by $\|\mu\| = |\mu|(X)$.

Proposition 9.12. Let \mathcal{M} be the set of all finite signed measures on X. Then \mathcal{M} is a Banach space under the total variation norm.

NTS D
$$|| p+ v| \le || p|| + || v||$$
 $\ge - td$ def day.

Right $|| p+ v| \le || p|| + || v||$ $\ge - td$ def day.

Right $|| p+ v| \le || p|| + || v||$ $\ge - td$ def day.

Right $|| p+ v| \le || p|| + || v||$ $\ge - td$ def day.

Right $|| p+ v| \le || p|| + || v||$ $\ge - td$ def day.

Right $|| p+ v| \le || p|| + || v||$ $\ge - td$ def day.

Right $|| p+ v| \le || p|| + || v||$ $\ge - td$ def day.

Right $|| p+ v| \le || p|| + || v||$ $\ge - td$ def day.

Right $|| p+ v| \le || p|| + || v||$ $\ge - td$ def day.

Right $|| p+ v| \le || p|| + || v||$ $\ge - td$ def day.

Right $|| p+ v| \le || p|| + || v||$ $\ge - td$ def day.

Right $|| p+ v| \le || p|| + || v||$ $\ge - td$ def day.

	St. Il
9.2. Absolute Continuity.	
Definition 9.13. Let $\mu, \bar{\nu}$ be two measures. We say $\bar{\nu}$ is absolutely continuous with respect to	(μ) notation $\nu \ll \mu$ if whenever
$\mu(A) = 0$ we have $\nu(A) = 0$. Example 9.14. Let $g \ge 0$ and define $\nu(A) = \int_A g d\mu$. (Notation: Say $d\nu = g d\mu$.)	= \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	vere exists a measurable function g
Theorem 9.15 [Radon-Nikodym]. If μ, ν are two σ -finite positive measures with $\nu \ll \mu$, then the such that $0 \leqslant g < \infty$ almost everywhere and $d\nu = g d\mu$.	_
$\gamma_0 = \gamma_0 $	

huecs: g = largest elent of 8" = g(a) = sup f(a) EVER Work.

 $\leq v(hx) < \infty.$

ht x = emp Stdn

AD \Rightarrow $\int_{X} f_{n} dn > \alpha - \frac{1}{n}$ ℓ $f_{n+1} > f_{n}$ ℓ $f_{n} \in \mathcal{E}$.

Sof $g = \lim_{n \to \infty} f_n$ (and exist).

Nord time: $\int_A g d\mu = \int_A v(A) \quad \forall A \in \Sigma$