9. Signed Measures

9.1. Hanh and Jordan Decomposition Theorex

Definition 9.1. We say p: ¥ — [—o00, 00| is & signed measure if:

(1) The range of u doesn’t contain both +

(2) u(@) =0
(3) If A; € ¥ are countably many pairwise disjoint sets then p(USA;) = >°7% u(4;).
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Ezample 9.2. Let f € LY(X, ), and define v by v(4) = fA fdu. Then v is a signed measure, and we write dv = f du.

Ezample 9.3. If pu, v are two (positive) measures such that either one is finite, then y — v is finite.
Theorem 9.4' (Jordan Decomposition). Any signed measure can be written/ (uniquely)) as the difference of two mutually singular

positive measures.




Definition 9.5. We say A € ¥ is a negative set if u(B) < 0 for all measurable sets B C A.
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Prgposition 9.6. If j(A) € (—o00,00) then there exists B C A such that B is negative and pu(B) < p(A).
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Theorem 9.7 (Hanh decomposition). If p is a signed measure on X, then X = PUN where[ P is positive ndﬁis{nqg@@

Remark 9.8. The decomposition is unique up to null sets.
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Definition 9.9. We say two positive measures i, v are mutually singular if there exists C' C X such that for every A € ¥ we have

wWANC)=v(ANCe) = m -
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Definition 9.10. Let p be a signed measure with Jordan decomposition@ Define the @te be the (positive)

measure |u| d:“ﬁ"r +u.
Definition 9.11. Define the total variation o@oy lpll = u|(X). & E@/ Ooj
Proposition 9.12. Le@ be the set of all finite signed measures on X. Then M is a Banach space under the total variation norm.
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9.2. Absolute Continuity. P W \M
Definition 9.13. Let pu, v be two, measures. We say/v s Ws with respect toﬂ; notation v < p) if whenever

p(A) =0 we havei/}f:l; A
Ezample 9.14. Let g > 0 and define v(A4) = ngdu. (Notation: Say dv :Q,dﬁ) ///\S;E VL?/ = Q ‘LS A’f’\
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Theorem 9.15®0n—Nikod m l If p,v are twoSa-ﬁniteSpositz’ve measures with v < p, then the measurable function g
such that 0 < g < oo almost everywhere and dv = gdu. -
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